Good software
engineering practices

Oliver Beckstein

Summer 2018 Beckstein Lab Mini-Workshops
August 6, 2018

https://becksteinlab.physics.asu.edu/learning/117/summer-2018-mini-workshops

@ ® This work is licensed under a Creative Commons Attribution
L_-_ 4.0 International License, except where noted.

https://becksteinlab.physics.asu.edu/learning/117/summer-2018-mini-workshops
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Role of Software In
Academic Research

science

Experiment

What fraction of your projects requires
scientific software?

1. <10%
2. 10% - 30%
3. 30% -50%

4. >50%

How much of your time do you spend on
writing software?

1. <10%
2. 10% - 30%
3. 30% -50%

4. >50%

What do you consider most important in
scientific software that you use?

N o o &~ Db

. fast

graphical user interface
correct

has documentation
source available
user-friendly

written in specific
programming language

(FORTRAN, C, C++, Python, rust,

Ruby, Julia, ook, assembly, ...)

8. Open source (licence e.g.,
BSD-3, MIT, GPL, CCQO, ...)

9. support available

10. free ($$9)

11. runs on specific OS (Linux,
macOS, Windows) Or

architecture (x86, GPU, Phi,
)

Z.. Merali, Nature 467 (2010), 775

Copyright © 2010, 2018 Springer Nature.

comnpwite

> Five tips to make scientific code

.SCIENTISTS AND THEIR more robust.

SOFTUARE

A survey of nearly 2,000
researchers showed how coding
has become an important part of
the research toolkit, but it
also revealed some potential
problens.

> said scientists spend

more time today developing
softuware than five years ago."

> of scientists spend at

least one fifth of their time
developing seftware.

>__DTlg of scwn;s"ts—

have a good understandxng of
software testing.

e - O . D st reseen
think that formal training
in developing seftware is
important,

ahy seientific programwing does: not
comnpwite

Z.. Merali, Nature 467 (2010), 775

Copyright © 2010, 2018 Springer Nature.

.. .oCIENTISTS AND THEIR
SOFTUARE

A survey of nearly 2,000
researchers showed how coding
has become an important part of
the research toolkit, but it
also revealed some potential
problens.

> said scientists spend

more time today developing
softuware than five years ago."

> of scientists spend at

least one fifth of their time
developing seftware.

>__DTlg of scwn;s"ts—

have a good understandxng of
software testing.

ooty EEYA i cientists
think that formal training
in developing seftware is
important,

...PRACTICING SAFE SOFTUWARE
> Five tips to make scientific code
more robust.

-¥ Use a version-control systenm:
Put source code, raw data files, parameters and other primary

material into it to record what you did, and when.

ahy seientific programwing does: not
comnpwite

Z.. Merali, Nature 467 (2010), 775

Copyright © 2010, 2018 Springer Nature.

.. .oCIENTISTS AND THEIR
SOFTUARE

A survey of nearly 2,000
researchers showed how coding
has become an important part of
the research toolkit, but it
also revealed some potential
problens.

> said scientists spend

more time today developing
softuware than five years ago."

> of scientists spend at

least one fifth of their time
developing seftware.

>__DTlg of scwn;s"ts—

have a good understandxng of
software testing.

ooty EEYA i cientists
think that formal training
in developing seftware is
important,

...PRACTICING SAFE SOFTUWARE
> Five tips to make scientific code
more robust.

-¥ Use a version-control systenm:
Put source code, raw data files, parameters and other primary

material into it to record what you did, and when.

A& Track your materials:

Know the source of your software. Keep a record of what raw
data were processed to produce a particular result, what tools

were used to do the processing, and how the tools were set up.

.. .ERROR 7. Merali, Nature 467 (2010), 775

Copyright © 2010, 2018 Springer Nature.

...uwhy seientific programring does not ...PRACTICING SAFE SOFTUWARE
compuwte > Five tips to make scientific code
.. .oCIENTISTS AND THEIR more robust.

SOF TUARE

A survey of nearly 2,000
—— 1 researchers showed how coding

has become an important part of
the research toolkit, but it material into it to record what you did, and when.

-¥ Use a version-control systenm:
Put source code, raw data files, parameters and other primary

also revealed some potential
problens. A& Track your materials:

Know the source of your software. Keep a record of what raw

=
> said scientists spend data were processed to produce a particular result, what tools

more time today developing were used to do the processing, and how the tools were set up.
softuware than five years ago."

> of scientists spend at “ Urite testable software:

least one fifth of their time
developing seftware.

> Only A PO #= Test the software:

have a good understanding of And get somebody else to read it and look for bugs.
softuvare testing.

Build large codes from smaller, easily testable chunks.

—>Only— 3 41. ;": —wof scientists =
think that formal training
in developing seftware is
important,

Z.. Merali, Nature 467 (2010), 775

Avhy seientifie programring does not

Copyright © 2010, 2018 Springer Nature.

comnpwite
.SCIENTISTS AND THEIR

SOFTUARE

A survey of nearly 2,000

— 1 researchers showed how coding
has become an important part of
the research toolkit, but it
also revealed some potential
problens.

> said scientists spend

more time today developing
softuare than five years ago."

> of scientists spend at

least one fifth of their time
developing seftware.

>—6n—ly of scwnt 1sts

have a good understandlng of
software testing.

think that formal training
in developing seftware is
important,

...PRACTICING SAFE SOFTUARE
> Five tips to make scientific code
nmore robust.

-¥ Use a version-control systenm:
Put source code, raw data files, parameters and other primary

material into it to record what you did, and when.

A& Track your materials:

Know the source of your software. Keep a record of what raw
data were processed to produce a particular result, what tools

were used to do the processing, and how the tools were set up.

“ Urite testable software:
Build large codes from smaller, easily testable chunks.

4= Test the software:
And get somebody else to read it and look for bugs

softuare:

t Encourage sharing of

Make the code that you use in research freely available, when
possible.

Z.. Merali, Nature 467 (2010), 775

Avhy seientifie programring does not

Copyright © 2010, 2018 Springer Nature.

comnpwite
.SCIENTISTS AND THEIR

SOFTUARE

A survey of nearly 2,000

— 1 researchers showed how coding
has become an important part of
the research toolkit, but it
also revealed some potential
problens.

> said scientists spend

more time today developing
softuare than five years ago."

> of scientists spend at

least one fifth of their time
developing seftware.

>—6n—ly of scwnt 1sts

have a good understandlng of
software testing.

think that formal training
in developing seftware is
important,

...PRACTICING SAFE SOFTUARE
> Five tips to make scientific code
nmore robust.

-¥ Use a version-control systenm:
Put source code, raw data files, parameters and other primary

material into it to record what you did, and when.

A& Track your materials:

Know the source of your software. Keep a record of what raw
data were processed to produce a particular result, what tools

were used to do the processing, and how the tools were set up.

“ Urite testable software:
Build large codes from smaller, easily testable chunks.

4= Test the software:
And get somebody else to read it and look for bugs

softuare:

t Encourage sharing of

Make the code that you use in research freely available, when
possible.

OPEN @ ACCESS Freely available online @ PLOS | SoMpuTaTioNAL

Ten Simple Rules for Reproducible Computational
Research

Geir Kjetil Sandve'?*, Anton Nekrutenko?® James Taylor?, Eivind Hovig'>°

Citation: Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten Simple Rules for Reproducible Computational
Research. PLoS Comput Biol 9(10): e1003285. doi:10.1371/journal.pcbi.1003285

6. For analyses that include randomness,
1. For every result, keep track how it was note underlying random seeds
produced
/. Always store raw data behind plots
2. Avoid manual data manipulation steps
8. Generate hierarchical analysis output,

3. Archive the exact versions of all allowing layers of increasing details to
external programs used be inspected
4. \ersion control all scripts 9. Connect textual statements to the

underlying result

5. Record all intermediate results, when
possible in standardized formats 10.Provide public access to scripts, runs,
and results

OPEN 8 ACCESS Freely available online @. PLOS (B:%A:\.g%LATIONAL

Ten Simple Rules for Effective Computational Research

James M. Osborne’?*, Miguel O. Bernabeu®*#, Maria Bruna'?, Ben Calderhead?, Jonathan Cooper’,
Neil Dalchau?, Sara-Jane Dunn?, Alexander G. Fletcher®, Robin Freeman?3, Derek Groen®,
Bernhard Knapp®, Greg J. Mclnerny'?, Gary R. Mirams’, Joe Pitt-Francis', Biswa Sengupta’,

David W. Wright>?, Christian A. Yates®, David J. Gavaghan', Stephen Emmott?, Charlotte Deane®

Citation: Osborne JM, Bernabeu MO, Bruna M, Calderhead B, Cooper J, et al. (2014) Ten Simple Rules for
Effective Computational Research. PLoS Comput Biol 10(3): €1003506. doi:10.1371/journal.pcbi.1003506

1. Look before you leap

2. Develop a prototype first 6. Use pictures: They really are
worth a thousand words

3. Make your code understandable
to others (and yourself) /. \Version control everything

4. Don’t underestimate the 8. Test everything
complexity of the task
9. Share everything

5. Understand the mathematical,
numerical, and computational 10.Keep going!
methods underpinning your
work

OPENaACCESS Freely available online @PLOS | BIOLOGY W|Ison G, Arullah DA, Brown CT,

Chue Hong NP, Davis M, et al.

. . e . 2014) Best Practices for
Best Practices for Scientific Computing (Scienzcific Computing. PLoS Biol

Greg Wilson'*, D. A. Aruliah?, C. Titus Brown?>, Neil P. Chue Hong® Matt Davis>, Richard T. Guy®”, 1 2(1): e1001745. doi:10.1371/
Steven H. D. Haddock’, Kathryn D. Huff?, lan M. Mitchell®, Mark D. Plumbley'®, Ben Waugh'’, : :
Ethan P. White'?, Paul Wilson3 Jouma|-pb|0-1 001745

1.Write programs for people, not computers
(@) keep program units small
(b) use meaningful, distinctive, consistent names
(c) make style and formatting consistent
2. Let the computer do the work
(a) Make the computer repeat tasks
(b) Save recent commands in file for re-use
(c) Use a build tool to automate workflows
3. Make incremental changes
(@) Work in small steps with frequent feedback and course correction (“agile”)
(b) Use a version control system (VCS)
(c) Version-control all manually created content
4. Don’t repeat yourself (or others)
(@) Every piece of data must have a single authoritative representation in the system
(b) Modularize code (instead of copying and pasting)
(c) Re-use code instead of rewriting it

OPENaACCESS Freely available online @PLOS | BIOLOGY W|Ison G, Arullah DA, Brown CT,

Chue Hong NP, Davis M, et al.

(2014) Best Practices for

Best Practices for Scientific Computing Scientific Computing. PLoS Biol

Greg Wilson'*, D. A. Aruliah?, C. Titus Brown?, Neil P. Chue Hong? Matt Davis>, Richard T. Guy®®, 1 2(1): e1001745. doi:10.1371/
Steven H. D. Haddock’, Kathryn D. Huff?, lan M. Mitchell®, Mark D. Plumbley'®, Ben Waugh'’, : :
Ethan P. White'?, Paul Wilson3 j0urna|.pb|0.1 001745

5. Plan for mistakes
(a) add assertions to programs to check their operation
(b) Use an off-the-shelf unit testing library
(c) Turn bugs into test cases
(d) Use a symbolic debugger
6. Optimize software only after it works correctly
(a) Use a profiler to identify bottlenecks
(b) Write code in the highest-level language possible
7. Document design and purpose, not mechanics
(a) Document interfaces and reasons, not implementation
(b) Refactor code in preference to explaining how it works
(c) Embed the documentation in the software (and use documentation generators)
8. Collaborate
(@) Use pre-merge code reviews
(b) Use pair programming (bringing someone new up to speed, tricky problems)
(c) Use an issue tracking tool

Basic software engineering

1. Version control

2. Automated testing

Basic software engineering

1. Version control

2. Automated testing

https://software-carpentry.org/
SOFTWARE CARPENTRY

Getting Scientists to Write Better Code by Making Them More Productive

By Greg wilson Computing In Science & Engineering, 8(6):66—69, 2006.

Version control with git

http://asu-compmethodsphysics-phy494.github.io/ASU-

PHY494/2018/01/30/04 Git basics/

http://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2018/01/30/04_Git_basics/
http://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2018/01/30/04_Git_basics/

Why version control ?

“FINAL . doc

/' /A'é

FINAL_rev.2.doc

C

f
INAL _rev.6.COMMENTS. d FINAL _rev.8.commentsS.
FINAL _rev.6.COMMENTS. doc A sl

JORSE CUAM © 2012

)
FINAL_rev.18.commente?. ENAL_rev.22.commenteH9.
corcectionsd.MORE.30.doc corrections. (0. #@%%WHYDD

www.PHpcoMics.coM Copyright © 2012 Jorge Cham

Version control with git

7 commit
commit
branch l\ “% time
N mer e

git-scm.com

http://asu-compmethodsphysics-phy494.github.io/ASU-
PHY494/2018/01/30/04 Git basics/

http://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2018/01/30/04_Git_basics/
http://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2018/01/30/04_Git_basics/

Create repository

cd mean calculator
git init

Stages of git

Working
Directory

.git directory
(Repository)

Checkout the project

git-scm.com

modified staged (“added”) committed

https://git-scm.com

git workflow

. modify files in working directory

. selectively stage changes that you want to include In
your next commit (adds only those files to the staging
area)

. commit your changes (takes files from the staging area
and stores them permanently in your Git repository)

Check status

git status

Use this command gratuitously!

Add files

git add README.md *.py

Commit files

git commit

When your editor pops up, enter a commit message: Convention:
e first line (<60 char): one line summary
e second line: blank
e third and following lines: more details The first line is mandatory
(you cannot have a commit without a message), the rest is
optional. The commit message should succinctly summarize the
changes in the commit.

Check status

git status

use this command gratuitousiy!

git workflow

1. modify files in working directory

2. selectively stage changes that you want to include in
your next commit (adds only those files to the staging

area)
Adding files/changes: git add

Removing files: git rm

Renaming files: git mv

3. commit your changes (takes files from the staging area
and stores them permanently in your Git repository)

git commit -m “message”

History

git log

Checkins Over Time

File A Al A2
| S |
File B (\ B B1
- [| |
File C C1 C2 C3

git-scm.com

https://git-scm.com

Branching -
master
branch-name \ “%

git branch branch-name
git checkout branch-name

git-scm.com

git branch

¢ Main branch: master
e Other branches: use meaningful names
e Short-cut: git checkout -b branch-name

https://git-scm.com

Merging
master
branch-name I\ <

/

git checkout master ‘ ~§Ss
git merge branch-name N

git-scm.com

e git tries automatic merging (and often succeeds)
e But... sometimes cannot reliably merge: manually fix conflicts

(edit files: look for conflict markers <<<<, ====, >>>>)
®

https://git-scm.com

Remote repositories

git clone remote-repo-url Create a local repository that is
cd repo linked to the remote “origin”

. Update local repository with
glt Pul 1 remote content (“read”); merge
if necessary.

g it push Update remote repository with
local content (“write”); must

pull first if some remote
content is not present in local.

GitHub https://github.com/

Cloud-based repositories
Free for open source (and education)

Create account and create new repo mean_calculator

Overview Repositories 10 Stars 102 Followers 66 Following 11

Type: All ~ Language: All ~ -

Add LICENSE (later) and README

Clone and add your files, then push

git clone https://github.com/YOUR USER NAME/mean calculator

-

w lesting

D& OGakown M > {/.;7,0 ?.037 gy oL5
/000 ' SW‘}A} "a«.an -/ 9.087 Y€ 795 <covuh
137w, (035 MP ~me W/;—eé—ﬂ 7-6/5725055(-)
03y PrRO > 2. 130y76YiS
Conv ok 2.13067¢w5

-1 ~~ 033 ./a...la.l;,rw./ XTJJJW [Ny !

| Rzkw\#ﬁo ?q n Q_‘

\Mo’ﬁb I \QU\

]ﬁg/{,}o a}"‘\"&‘ VQNC“KGL\-.C(O‘f buCI Lcl'm‘ -{ounzl\.

[Juo

Courtesy of the Naval Surface Warfare Center, Dahlgren, VA., 1988. - U.S.
Naval Historical Center Online Library Photograph NH 96566-KN via https://
en.wikipedia.org/wiki/Software bug#/media/File:H96566KkK.jpg

http://www.history.navy.mil/photos/images/h96000/h96566kc.htm
https://en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg
https://en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg

-~

94
0 v
J 000

Testing

On Aon y’wwl‘&,l {/~17vo ?037 ¥y7 015

S.WQ’J an(,lom / G. 08 7 S’Y(v 9y C«wui'
R P oo S5 bPposo . N,

Code without tests is legacy code.

1/799

ad

ST}J'*"-J _ CO.StV\e | T (Slv\c c-‘\eck)
,_,I-c.u. }r?;',lf li A .T X djet TE&#

Qek #‘70 ?C\f\c‘

\Mo'ﬁs in (2 \cu.\

‘ . o-f Bucl Lcim‘ -{ounJ\.

Courtesy of the Naval Surface Warfare Center, Dahlgren, VA., 1988. - U.S.
Naval Historical Center Online Library Photograph NH 96566-KN via https://
en.wikipedia.org/wiki/Software bug#/media/File:H96566KkK.jpg

http://www.history.navy.mil/photos/images/h96000/h96566kc.htm
https://en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg
https://en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg

Tests

Assert that your code produces known results.

Tests are functions that
* run your code
e compare computed to known correct values

* raise exception or return error if they disagree

Write tests for
e functions/methods/classes (unit tests)
 modules/libraries (integration tests)

Regression tests (compare to past values)

https://katyhuff.github.io/python-testing/

— REILLY"

Effective
Computatlon

Anthony Scopatz &
Kathryn 0. Huff

https://katyhuff.github.io/python-testing/

pytest

mean.py

~

—

def mean(num list):

~

return sum(num list)/len(num list)

_J

Run the tests

pytest

test_mean.py

—~
import pytest

from mean import mean
def test ints():

exp = 3

assert obs == exp

def test zero():
num list=[0,2,4,6]

exp = 3

assert obs == exp

num list = [1,2,3,4,5]
obs = mean(num list)

obs = mean(num list)

_J

Continuous integration (ClI)

* Does my software work on someone else’s computer?

e With different versions of libraries/Python/ ...?

Cl server

1.

© N o O &~ b

Checks out code from repository (triggered by push or pull request)
Spins up instances of operating systems (Linux, macOS, windows)
with required software versions (e.g., Python 2.7, 3.6)

Installs environment (libraries, ...)

Builds and installs software

Runs test scripts.

Checks for errors

Reports results (include coverage)

Cl Providers

Providers with free plans (for open source)

Travis Cl https://travis-ci.com/ (Linux, macQOS)

Appveyor https://ci.appveyor.com/ (Windows)

Circle CI https://circleci.com/ (Linux, macOS*)

Coverage reporting

codecov https://codecov.io/

coveralls https://coveralls.io/

https://travis-ci.com/
https://ci.appveyor.com/
https://circleci.com/
https://codecov.io/
https://coveralls.io/

Example: pytest + Travis ClI

Based on Katy Huff’s https://katyhuff.github.io/python-testing/08-ci/

1. Create new repo on GitHub: mean_calculator

2. Clone locally

3. Add and commit example files from https://github.com/Becksteinlab/
workshop_testing

4. Create account on https://travis-ci.com and allow GitHub Apps Integration to
access all your repositories

5. Push changes (including the .travis.yml file): should trigger build on Travis-CI

6. check https://travis-ci.com/ (when logged in, shows all your builds)

https://katyhuff.github.io/python-testing/08-ci/
https://github.com/orbeckst/mean_calculator
https://github.com/Becksteinlab/workshop_testing
https://github.com/Becksteinlab/workshop_testing
https://travis-ci.com
https://travis-ci.com/

Documentation

e Code without documentation is close to useless (to others
and to your future self).

* No-one likes writing documentation.

Getting docs done

= Some/any documentation is better than none.
= Require docs in your projects.
= Keep code and docs together (easier to write and maintain)

= se tools that make it easy to generate docs (HTML, PDF, ...)

= Document generators: sphinx, doxygen, ...

= Human readable formats: restructured text (reST),
markdown, ...

= Automate doc creation: ReadTheDocs https://
readthedocs.org/, GitHub pages https://pages.qgithub.com/
+ CI

https://readthedocs.org/
https://readthedocs.org/
https://pages.github.com/

) star 219

Navigation
1. Overview over MDAnalysis

4, Analysis modules
5. Topclogy modules
6. Coordinazes modules

9. Auxiliary modules
IL _Lpre module_s
11. Visual zation modulzas

MCAnalysis.lin

13. Version information for
MDAnalysls-
MCAnalysis.version

warnings
MCAnalysis.cxceptions
16. References

Related Topics

Documentaticn Overview

MDA"zLysis
Quick search

Go

https://www.mdanalysis.org/
mdanalysis/

MDAnalysis documentation

Release: 0.18.1-cev

Date: Aug 05, 2018

MDAnalysis (/www.mdaralys s org) is an object cricnted python toolkit to analyze

molecular cynamics trajectories generated by CHARMM, Gromacs, Amber, NAMD, LAMMPS,

DL_POLY ard other packages: It also reads other formats (e.g., P05 dles and <

trajectories; see Table of supported coordinate formats and Tzble of Supported Tepology

Formats for the full lists). It can write most of these “ormats, too, together with atom
selections for use in Gromacs, CHARMM, VMD and PyMol (see Selection exporters).

Z format

I allows one tn read molacilar dynamics frajectories and access the atomric coardinates
through NumPy arrays. This prevides a flexible ard relatively fast framework for complex
analysis tasks. Fairly comp.cte atom Sclection commands are implemented. Trajectories
can a.so be menipulated (for instance, fit to @ reference structure) and written out in a
range of formats.

Getting involved

Pleesez report bugs or enhancement requests Lhirouyh the 1soue Trackern Questions wan elsu
be asked on the mdnalysis-ciscussior mailing List

agree end adhere 10 — please read It.

Installing MDAnalysis

either wth pp or conda.

pip

Installzt on with pip and a minimal set of depencencies:

https://www.mdanalysis.org/mdanalysis/
https://www.mdanalysis.org/mdanalysis/

GromacsWrapper 0.6.1+70.gbb87aa8 documentation »

https://gromacswrapper.readthedocs.io/en/develop/

GromacsWrapper — a Python framework for
Gromacs

Release: 0.6.1+70.g6b87aa8
Date: August 03, 2018

GromacsWrapper is a Python package that wraps system calls to Cromacs tools
into thin classes. This allows for fairly seamless integration of the gromacs tools
into Python scripts. This is generally superior to shell scripts because of Python's
better error handling and superior data structures. It also allows for modularization
and code re-use. In addition, commands, warnings and errors are logged to a file
so that there exists a complete history of what has been done.

See INSTALL for download and installation instructions. Documentation is primarily
provided through the Python doc strings (from which most of the online documen-
tation is generated).

The source code itself is available in the CromacsWrapper git repository.

Please be aware that this is alpha software that most definitely contains bugs. The APl is

not stable yet and can change between releases.

It is your responsibility to ensure that you are running simulations with sensible parame-
ters.

The package and the documentation are still in flux and any feedback, bug reports.
suggestions and contributions are very welcome. See the package README: Gro-
macsWrapper for contact details.

next | modules | index

GromacsWrapper

GromacsWrapper — a Python
framework for Gromacs

e Contents

@ Indices and tables

Installation

Show Source

https://gromacswrapper.readthedocs.io/en/develop/

% Read the Docs

Projects >

GromacsWrapper

= 0 3 £ 3 e

Versions
Repository
latest Public https:/github.com/Becksteinlab
/GromacsWrapper
master Public
Last Built
develop Public 3 days, 9 hours ago passed

Maintainers
(4l
Build a version

latest j Badge
docs passing

Tag

Buld version h e e

Sharing code

Publish your computer
code: it is good enough

Freely provided working code — whatever its quality — improves programming
and enables others to engage with your research, says Nick Barnes.

14 October 2010 | Nature 467, 753 (2010) 1 doi1:10.1038/467753a

I am a professional software engineer and I want to share a trade secret with scientists: most
professional computer software isn't very good. The code inside your laptop, television, phone or car
1s often badly documented, inconsistent and poorly tested. [...]

That the code 1s a little raw 1s one of the main reasons scientists give for not sharing it with others.
Yet, software in all trades 1s written to be good enough for the job intended. So if your code is good
enough to do the job, then it 1s good enough to release — and releasing it will help your research and
your field.

It is not common practice It should be...

People will pick holes and Open-ness is the proper scholarly approach. Nobody is
demand support and bug fixes. ~ €ntitled to demand technical support for freely provided
code: if the feedback is unhelpful, ignore it.

The code is valuable intellectual Rarely... almost all value is your expertise. Code not
property! backed by experts = abandonware

Too much work to polish code! Does not have to be perfect — good enough is good!

Avalilable

JIAICIS

ARTICLES

Published on Web 02/04/2006

Insertion and Assembly of Membrane Proteins via Simulation
Peter J. Bond and Mark S. P. Sansom*

re

P. J. Bond and M. S. P. Sansom. Bilayer deformation
by the Kv channel voltage sensor domain revealed by
self-assembly simulations. Proc Natl Acad Sci 104(8):
2631-2636, 2007. 110 citations

P. J. Bond and M. S. P. Sansom. Insertion and
assembly of membrane proteins via simulation. JACS
128(8):2697-2704, Mar 2006. 331 citations

441 citations

= Citations

J. Chem. Theory and Comput. 2008, 4, 819-834

" I ‘ Journal of Chemical Theory and Computation

The MARTINI Coarse-Grained Force Field: Extension to
Proteins

Luca Monticelli,” Senthil K. Kandasamy,* Xavier Periole,® Ronald G. Larson,*
D. Peter Tieleman.' and Siewert-Jan Marrink**

Q #e e - ! i 8 ” b Thr
!A,g . o. sphe Q -
¢- c- B-g- 8-

apolar intermediate polar charged

L. Monticelli, S. K. Kandasamy, X. Periole, R. G.
Larson, D. P. Tieleman, and S.-J. Marrink. The
MARTINI coarse-grained force field: Extension to

proteins. J Chem Theory Comput, 4(5):819-834, 2008.
1476 citations

1476 citations

Home About Downloads Tutorials Publications Contact Forum

'Martini

Coarse Grain Forcefield for Biomolecules

J. Chem. Theory and Comput. 2008, 4, 8§19-834

,‘ I ‘ Journal of Chemical Theory and Computation

*? (The MARTINI Coarse-Grained Force Field: Extension to
(W)” & A (G Proteins
»\ ‘

\ l ‘ , I Luca Monticelli,” Senthil K. Kandasamy,i Xavier Periole,® Ronald G. Larson,*

D. Peter Tieleman.” and Siewert-Jan Marrink*"

Download categories Proteins and bilayers

Force field parameters

Example applications martinize

Tools

Proteins and bilayers Last Updated: Thursday, 17 August 2017 11:59

drrt LrE L, Martinize is a python script to generate Martini protein topology and structure files based on an atomistic structure file. It
Visualization replaces the old seq2itp, atom2cg and EINeDyn scripts. The produced topology and structure files are in a format suitable
for Gromacs.

http://cgmartini.nl/index.php/tools2/proteins-and-bilayers

http://cgmartini.nl/index.php/tools2/proteins-and-bilayers

Public repositories

Source code / VCS
e GitHub https://qgithub.com/

* BitBucket https://bitbucket.org/

e SourceForge https://sourceforge.net/

Data / Source code (shapshot)

e /Zenodo https://zenodo.org/

* figshare https://figshare.com/

 DataDryad https://www.datadryad.org/

https://github.com/
https://bitbucket.org/
https://sourceforge.net/
https://zenodo.org/
https://figshare.com/
https://www.datadryad.org/

Licensing

With material from and based on: A short lecture on Open Licensing, Lorena A. Barba
(The George Washington University), https://doi.org/10.6084/m9.figshare.4516892.v1

See also: https://barbagroup.github.io/essential skills RRC/

https://barbagroup.github.io/essential_skills_RRC/

Free and Open Source
Software (FOSS)

e Great impact (e.g., Linux, Apache, git,
Python, ...)

e Alternative to intellectual-property
iInstruments

®

* OS licenses: allow people to open source
coordinate their work freely, within the INnitiative
confines of copyright law, while making
access and wide distribution a priority py0./70pensource.org/

Open source

Making the source public to read /s not enough.

We must attach a license that allows others to
modify and distribute the code.

OPEN @ ACCESS Freely available online P1LOS computationAL BioLOGY

A Quick Guide to Software Licensing for the Scientist-
Programmer

Andrew Morin’, Jennifer Urban?, Piotr Sliz'*

@ PLoS Computational Biology | www.ploscompbiol.org 1 July 2012 | Volume 8 | Issue 7 | 1002598

e Software is creative work: copyright is automatically attached to it
* The creator (or typically their institution) owns the copyright.

e Public code is unusable without a license: attach a license to
any code you want to make public.

Permissive v‘s Copy-Left

All are “open”: allow free use, distribution, modification

https://opensource.org/licenses

- Fewest restrictions - Guarantees perpetual

- Only require that authors access to source code

be given credit - Requires derivative works
- examples: BSD, MIT to be under same license
License, Apache License - Considered restrictive (and

industry dislikes it)
- examples: GNU GPL, LGPL

https://opensource.org/licenses

MIT License

https://choosealicense.com/licenses/mit/

A short and simple permissive license with conditions only requiring preservation of copyright and
license notices. Licensed works, modifications, and larger works may be distributed under different
terms and without source code.

Permissions Conditions Limitations
® Commercial use ® License and copyright notice @ Liability

@ Distribution @ Warranty
® Modification

® Private use

MIT License

Copyright (c) [year] [fullname]

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

https://choosealicense.com/licenses/mit/

GNU General Public License v3.0

https://choosealicense.com/licenses/gpl-3.0/
GNU GPLv3

Permissions of this strong copyleft license are conditioned on making available complete source code of
licensed works and modifications, which include larger works using a licensed work, under the same
license. Copyright and license notices must be preserved. Contributors provide an express grant of
patent rights.

Permissions Conditions Limitations
® Commercial use ® Disclose source @ Liability

@ Distribution ® License and copyright notice @ Warranty
® Modification ® Same license

@ Patent use @ State changes

® Private use

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

https://choosealicense.com/licenses/gpl-3.0/

License compatibility

Combining code (libraries, functions) is important to create
new software in a modular fashion.

Licenses must be compatible!

Not all licenses are compatible!

Backward compatible Forward compatible

Upstream Downstream

Permissive Permissive

> CTED
Examples:
-BSD __ Jd Copyleft

-MIT \

Permissive

Examples:
Copyleft -GPL —_— 4 Copyleft
-LGPL

Permissive

Examples:

-Bespoke
-Commercial

Morin A, Urban J, Sliz P (2012) PLoS Comput Biol 8(7): €1002598. doi:10.1371/journal.pcbi.1002598

Choosing a license

Default: simple and permissive (MIT)

Ensure openness: (GPL)

https://choosealicense.com/

https://choosealicense.com/

Grant proposals

e NIH and NSF have data sharing guide lines and documents.

» Write: “The research software that will be produced in this
project will be released as open source under an OSI-
approved license (xxx license).”

Thank you!

e Links to material: https://becksteinlab.physics.asu.edu/
learning/117/summer-2018-mini-workshops

e \Videos: Youlube: Becksteinlab Mini-Workshop 2018

https://becksteinlab.physics.asu.edu/learning/117/summer-2018-mini-workshops
https://becksteinlab.physics.asu.edu/learning/117/summer-2018-mini-workshops
https://becksteinlab.physics.asu.edu/learning/117/summer-2018-mini-workshops
https://www.youtube.com/watch?v=aQOsX9AsCZA&list=PLmLa309lxtfrTbqyU4_TMws5e9g35mj8d

