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What fraction of your projects requires 
scientific software? 

1. < 10%


2. 10% – 30%


3. 30% – 50%


4. > 50%



How much of your time do you spend on 
writing software? 

1. < 10%


2. 10% – 30%


3. 30% – 50%


4. > 50%



1. fast


2. graphical user interface


3. correct 


4. has documentation


5. source available


6. user-friendly


7. written in specific 
programming language 
(FORTRAN, C, C++, Python, rust, 
Ruby, Julia,  ook, assembly, …)


8. open source (licence e.g., 
BSD-3, MIT, GPL, CC0, …)


9. support available


10. free ($$$)


11.  runs on specific OS (Linux, 
macOS, Windows) or 
architecture (x86, GPU, Phi, 
…)

What do you consider most important in 
scientific software that you use? 



hen hackers leaked thousands of 
e-mails from the Climatic Research 
Unit (CRU) at the University of 
East Anglia in Norwich, UK, last 

year, global-warming sceptics pored over the  
documents for signs that researchers had 
manipulated data. No such evidence emerged, 
but the e-mails did reveal another problem — 
one described by a CRU employee named 
“Harry”, who often wrote of his wrestling 
matches with wonky computer software. 

“Yup, my awful programming strikes again,” 
Harry lamented in one of his notes, as he 
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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programs cause researchers such as Harry 
to waste valuable time and energy. But the  
coding problems can sometimes cause sub-
stantial harm, and have forced some scientists 
to retract papers. 

As recognition of these issues has grown, 
software experts and scientists have started 
exploring ways to improve the codes used 
in science. Some efforts teach researchers 
important programming skills, whereas oth-
ers encourage collaboration between scientists 
and software engineers, and teach researchers 
to be more open about their code. 

A PROPER EDUCATION
Greg Wilson, a computer scientist in Toronto, 
Canada, who heads Software Carpentry — an 
online course aimed at improving the comput-
ing skills of scientists — says that he woke up to 
the problem in the 1980s, when he was work-
ing at a physics super computing facility at the 
University of Edinburgh, UK. After a series of 
small mishaps, he realized that, without formal 
training in programming, it was easy for sci-
entists trying to address some of the Universe’s 
biggest questions to inadvertently introduce 
errors into their codes, potentially “doing more 
harm than good”.

After decades griping about the poor coding 
skills of scientists he knew, Wilson decided to 

see how widespread the prob-
lem was. In 2008, he and his 
colleagues conducted an online 
survey of almost 2,000 research-
ers, from students to senior aca-
demics, who were working with 
computers in a range of sciences. 
What he found was worse than 
he had anticipated1 (see ‘Scien-
tists and their software’). “There 
are terrifying statistics showing 
that almost all of what scien-
tists know about coding is self-
taught,” says Wilson. “They just 
don’t know how bad they are.”

As a result, codes may be 
riddled with tiny errors that 
do not cause the program to 
break down, but may drasti-
cally change the scientific results 
that it spits out. One such error 
tripped up a structural-biology 
group led by Geoffrey Chang 
of the Scripps Research Insti-
tute in La Jolla, California. In 
2006, the team realized that a 
computer program supplied by 
another lab had flipped a minus 
sign, which in turn reversed two 
columns of input data, causing 
protein crystal structures that 
the group had derived to be 

inverted. Chang says that the other lab provided 
the code with the best intentions, and “you just 
trust the code to do the right job”. His group 
was forced to retract five papers published in 
Science, the Journal of Molecular Biology and 
Proceedings of the National Academy of Sciences, 
and now triple checks everything, he says. 

“How many fields have been held back, and 
how many people have had their careers dis-
rupted, because of a buggy program?” asks 
Wilson.

More-rigorous testing could help. Diane 
Kelly, a computer scientist at the Royal Mili-
tary College of Canada in Kingston, Ontario, 
says the problem is that scientists rely on “vali-
dation testing” — looking to see whether the 
answer that the code produces roughly matches 
what the scientists expect — and this can miss 
important errors2. The software industry relies 
on a different approach: breaking codes into 
manageable chunks and testing each piece 
individually, then visually inspecting the lines 
of code that stitch these chunks together (see 
‘Practicing safe software’).

Many programmers in industry are also 
trained to annotate their code clearly, so that 
others can understand its function and eas-
ily build on it. But scientists often lack these 
communication and documentation skills. 
Even if researchers lift a whole working code 

and reuse it, rather than writing their own, 
they can apply the program incorrectly if it 
lacks clear documentation. Aaron Darling, a 
computational biologist at the University of 
California, Davis, unwittingly caused such a 
mistake with his own computer code for com-
paring genomes to reconstruct evolutionary 
relationships. He had designed the program 
to work only with closely related organisms, 
but discovered that an independent group 
had used it to look at sequences far outside the 
code’s working range.

“It was lucky that I came across it, because 
their published results were totally wrong, but 
they couldn’t know that because I hadn’t clearly 
documented how my code worked,” says  
Darling. “It’s not something that I am proud of, 
but I am careful to be more clear now.” 

SLAYING THE MONSTER
Problems created by bad documentation are 
further amplified when successful codes are 
modified by others to fit new purposes. The 
result is the bane of many a graduate student 
or postdoc’s life: the ‘monster code’. Sometimes 
decades old, these codes are notoriously messy 
and become progressively more nightmarish to 
handle, say computer scientists. 

“You do have some successes, but you also 
end up with a huge stinking heap of software 
that doesn’t work very well,” says Darling.

The mangled coding of these monsters can 
sometimes make it difficult to check for errors. 
One example is a piece of code written to ana-
lyse the products of high-energy collisions at 
the Large Hadron Collider particle accelerator 
at CERN, Europe’s particle-physics laboratory 
near Geneva, Switzerland. The code had been 
developed over more than a decade by 600 
people, “some of whom are excellent program-
mers and others who do not really know how 
to code very well”, says David Rousseau, soft-
ware co ordinator for the ATLAS experiment at 
CERN. Wilson and his students tried to test the 
program, but they could not get very far: the 
code would not even run on their machines. 

Rousseau says that the ATLAS group can test 
the software only on the Linux operating sys-
tem at the moment, but is striving to make the 
code compatible with Mac computers. This is 
important, he says, “because different platforms 
expose different types of errors that may other-

wise be overlooked”.
Some software devel-

opers have found ways 
to combat the growth 
of monster code. One 
example is the Visuali-
zation Toolkit, an open-
source, freely avail  
able software system 
for three-dimensional 
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computer graphics. People can 
modify the software as they wish, 
and it is rerun each night on every 
computing platform that supports 
it, with the results published on the 
web. The process ensures that the 
software will work the same way 
on different systems. 

That kind of openness has yet 
to infiltrate the scientific research 
world, where many leading science 
journals, including Nature, Science 
and Proceedings of the National 
Academy of Sciences, do not insist 
that authors make their code avail-
able. Rather, they require that 
authors provide enough informa-
tion for results to be reproduced.

THE SEARCH FOR SOLUTIONS
In November 2009, a group of sci-
entists, lawyers, journal editors, and 
funding representatives gathered for 
the Yale Law School Data and Code 
Sharing Roundtable in New Haven, 
Connecticut, where they recom-
mended that scientists go further 
by providing links to the source-
code and the data used to generate 
results when publishing. Although 
a step in the right direction, such 
requirements don’t always solve 
the problem. Since 1996, The Journal of Money, 
Credit and Banking has required researchers to 
upload their codes and data to an archive. But a 
2006 study revealed that of 150 papers submit-
ted to the journal over the preceding decade 
that fell under this requirement, results could 
be independently replicated with the materials 
provided for fewer than 15 (ref. 3).

Proponents of openness argue that research-
ers seeking to replicate published results need 
access to the original software, but others say 
that more transparency may not help much. 
Martin Rees, president of the Royal Society 
in London, says it would be too much to ask 
reviewers to check code line by line. And in his 
own field of astro physics, results can really be 
trusted only in cases in which a number of dif-
ferent groups have written independent codes 
to perform the same task and found similar 
results. Still, he acknowledges that “how to 
trust unique codes remains an issue”.

There are signs that scientific leaders are now 
taking notice of these concerns. In 2009, the UK 
Engineering and Physical Sciences Research 
Council put out a call for 
help for scientists trying 
to create usable software, 
which led to the forma-
tion of the Software Sus-
tainability Institute (SSI) 

at the University of Edinburgh. The SSI unites 
trained software developers with scientists 
to help them add new lines to existing codes, 
allowing them to tackle extra tasks without the 
programs turning into monsters. They also try 
to share their products across disciplines, says 
Neil Chue Hong, the SSI’s director. For instance, 
they recently helped build a code to query 
clinical records and help monitor the spread 
of disease. They are now sharing the structure 
of that code with researchers who are trying to 
use police records to identify crime hot spots. 
“It stops researchers wasting time reinventing 
the wheel for each new application,” says Chue 
Hong.

Another solution is to bring trained com-
puter scientists into research groups, either 
permanently or as part of temporary alliances. 
Software developer Nick Barnes has set up the 
Climate Code Foundation, based in Sheffield, 
UK, to help climate researchers. He was moti-
vated by problems with NASA’s Surface Tem-
perature Analysis software, which was released 
to the public in 2007. Critics complained that 
the program, written in the scientific pro-
gramming language Fortran, would not work 
on their machines and they could therefore 
not trust what it said about global warming. In 
consultation with NASA researchers, Barnes 
rewrote the code in a newer, more transparent 

programming language — Python 
— reducing its length and mak-
ing it easier for people who aren't 
software experts to understand 
how it functions. “Because of the 
immense public interest and the 
important policy issues at stake, 
it was worth taking the time to do 
that,” says Barnes. His new code 
shows the same general warming 
trend as the original program. 

In the long term, though, Barnes 
says that there needs to be a change 
in the way that science students are 
trained. He cites Wilson’s online 
Software Carpentry course as a 
good model for how this can be 
done, to equip students with cod-
ing skills. Wilson developed the 
week-long course to introduce sci-
ence graduate students to tools that 
have been software-industry stand-
ards for 30 years — such as ‘version 
control’, which allows multiple pro-
grammers to make changes to the 
same code, while keeping track of 
all changes.

Science administrators also need 
to value programming skills more 
highly, says David Gavaghan, a 
computational biologist at the Uni-
versity of Oxford, UK. “There needs 

to be a real shift in mindset away from worry-
ing about how to get published in Nature and 
towards thinking about how to reward work 
that will be useful to the wider community.”

Gavaghan now uses the software industry’s 
‘master–apprentice’ approach to train gradu-
ate students in his lab. New software projects 
are split up into bite-sized chunks, with each 
segment assigned to a pair of programmers — 
one experienced and one novice — who work 
together on it. “It forces students to become 
consistent code-builders,” says Gavaghan. 

Bringing industrial software-development 
practices into the lab cannot come too soon, 
says Wilson. The CRU e-mail affair was a 
warning to scientists to get their houses in 
order, he says. “To all scientists out there, ask 
yourselves what you would do if, tomorrow, 
some Republican senator trains the spotlight 
on you and decides to turn you into a politi-
cal football. Could your code stand up to 
attack?” SEE WORLD VIEW, P.753

Zeeya Merali is a freelance writer in London.
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hen hackers leaked thousands of 
e-mails from the Climatic Research 
Unit (CRU) at the University of 
East Anglia in Norwich, UK, last 

year, global-warming sceptics pored over the  
documents for signs that researchers had 
manipulated data. No such evidence emerged, 
but the e-mails did reveal another problem — 
one described by a CRU employee named 
“Harry”, who often wrote of his wrestling 
matches with wonky computer software. 

“Yup, my awful programming strikes again,” 
Harry lamented in one of his notes, as he 
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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programs cause researchers such as Harry 
to waste valuable time and energy. But the  
coding problems can sometimes cause sub-
stantial harm, and have forced some scientists 
to retract papers. 

As recognition of these issues has grown, 
software experts and scientists have started 
exploring ways to improve the codes used 
in science. Some efforts teach researchers 
important programming skills, whereas oth-
ers encourage collaboration between scientists 
and software engineers, and teach researchers 
to be more open about their code. 

A PROPER EDUCATION
Greg Wilson, a computer scientist in Toronto, 
Canada, who heads Software Carpentry — an 
online course aimed at improving the comput-
ing skills of scientists — says that he woke up to 
the problem in the 1980s, when he was work-
ing at a physics super computing facility at the 
University of Edinburgh, UK. After a series of 
small mishaps, he realized that, without formal 
training in programming, it was easy for sci-
entists trying to address some of the Universe’s 
biggest questions to inadvertently introduce 
errors into their codes, potentially “doing more 
harm than good”.

After decades griping about the poor coding 
skills of scientists he knew, Wilson decided to 

see how widespread the prob-
lem was. In 2008, he and his 
colleagues conducted an online 
survey of almost 2,000 research-
ers, from students to senior aca-
demics, who were working with 
computers in a range of sciences. 
What he found was worse than 
he had anticipated1 (see ‘Scien-
tists and their software’). “There 
are terrifying statistics showing 
that almost all of what scien-
tists know about coding is self-
taught,” says Wilson. “They just 
don’t know how bad they are.”

As a result, codes may be 
riddled with tiny errors that 
do not cause the program to 
break down, but may drasti-
cally change the scientific results 
that it spits out. One such error 
tripped up a structural-biology 
group led by Geoffrey Chang 
of the Scripps Research Insti-
tute in La Jolla, California. In 
2006, the team realized that a 
computer program supplied by 
another lab had flipped a minus 
sign, which in turn reversed two 
columns of input data, causing 
protein crystal structures that 
the group had derived to be 

inverted. Chang says that the other lab provided 
the code with the best intentions, and “you just 
trust the code to do the right job”. His group 
was forced to retract five papers published in 
Science, the Journal of Molecular Biology and 
Proceedings of the National Academy of Sciences, 
and now triple checks everything, he says. 

“How many fields have been held back, and 
how many people have had their careers dis-
rupted, because of a buggy program?” asks 
Wilson.

More-rigorous testing could help. Diane 
Kelly, a computer scientist at the Royal Mili-
tary College of Canada in Kingston, Ontario, 
says the problem is that scientists rely on “vali-
dation testing” — looking to see whether the 
answer that the code produces roughly matches 
what the scientists expect — and this can miss 
important errors2. The software industry relies 
on a different approach: breaking codes into 
manageable chunks and testing each piece 
individually, then visually inspecting the lines 
of code that stitch these chunks together (see 
‘Practicing safe software’).

Many programmers in industry are also 
trained to annotate their code clearly, so that 
others can understand its function and eas-
ily build on it. But scientists often lack these 
communication and documentation skills. 
Even if researchers lift a whole working code 

and reuse it, rather than writing their own, 
they can apply the program incorrectly if it 
lacks clear documentation. Aaron Darling, a 
computational biologist at the University of 
California, Davis, unwittingly caused such a 
mistake with his own computer code for com-
paring genomes to reconstruct evolutionary 
relationships. He had designed the program 
to work only with closely related organisms, 
but discovered that an independent group 
had used it to look at sequences far outside the 
code’s working range.

“It was lucky that I came across it, because 
their published results were totally wrong, but 
they couldn’t know that because I hadn’t clearly 
documented how my code worked,” says  
Darling. “It’s not something that I am proud of, 
but I am careful to be more clear now.” 

SLAYING THE MONSTER
Problems created by bad documentation are 
further amplified when successful codes are 
modified by others to fit new purposes. The 
result is the bane of many a graduate student 
or postdoc’s life: the ‘monster code’. Sometimes 
decades old, these codes are notoriously messy 
and become progressively more nightmarish to 
handle, say computer scientists. 

“You do have some successes, but you also 
end up with a huge stinking heap of software 
that doesn’t work very well,” says Darling.

The mangled coding of these monsters can 
sometimes make it difficult to check for errors. 
One example is a piece of code written to ana-
lyse the products of high-energy collisions at 
the Large Hadron Collider particle accelerator 
at CERN, Europe’s particle-physics laboratory 
near Geneva, Switzerland. The code had been 
developed over more than a decade by 600 
people, “some of whom are excellent program-
mers and others who do not really know how 
to code very well”, says David Rousseau, soft-
ware co ordinator for the ATLAS experiment at 
CERN. Wilson and his students tried to test the 
program, but they could not get very far: the 
code would not even run on their machines. 

Rousseau says that the ATLAS group can test 
the software only on the Linux operating sys-
tem at the moment, but is striving to make the 
code compatible with Mac computers. This is 
important, he says, “because different platforms 
expose different types of errors that may other-

wise be overlooked”.
Some software devel-

opers have found ways 
to combat the growth 
of monster code. One 
example is the Visuali-
zation Toolkit, an open-
source, freely avail  
able software system 
for three-dimensional 
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computer graphics. People can 
modify the software as they wish, 
and it is rerun each night on every 
computing platform that supports 
it, with the results published on the 
web. The process ensures that the 
software will work the same way 
on different systems. 

That kind of openness has yet 
to infiltrate the scientific research 
world, where many leading science 
journals, including Nature, Science 
and Proceedings of the National 
Academy of Sciences, do not insist 
that authors make their code avail-
able. Rather, they require that 
authors provide enough informa-
tion for results to be reproduced.

THE SEARCH FOR SOLUTIONS
In November 2009, a group of sci-
entists, lawyers, journal editors, and 
funding representatives gathered for 
the Yale Law School Data and Code 
Sharing Roundtable in New Haven, 
Connecticut, where they recom-
mended that scientists go further 
by providing links to the source-
code and the data used to generate 
results when publishing. Although 
a step in the right direction, such 
requirements don’t always solve 
the problem. Since 1996, The Journal of Money, 
Credit and Banking has required researchers to 
upload their codes and data to an archive. But a 
2006 study revealed that of 150 papers submit-
ted to the journal over the preceding decade 
that fell under this requirement, results could 
be independently replicated with the materials 
provided for fewer than 15 (ref. 3).

Proponents of openness argue that research-
ers seeking to replicate published results need 
access to the original software, but others say 
that more transparency may not help much. 
Martin Rees, president of the Royal Society 
in London, says it would be too much to ask 
reviewers to check code line by line. And in his 
own field of astro physics, results can really be 
trusted only in cases in which a number of dif-
ferent groups have written independent codes 
to perform the same task and found similar 
results. Still, he acknowledges that “how to 
trust unique codes remains an issue”.

There are signs that scientific leaders are now 
taking notice of these concerns. In 2009, the UK 
Engineering and Physical Sciences Research 
Council put out a call for 
help for scientists trying 
to create usable software, 
which led to the forma-
tion of the Software Sus-
tainability Institute (SSI) 

at the University of Edinburgh. The SSI unites 
trained software developers with scientists 
to help them add new lines to existing codes, 
allowing them to tackle extra tasks without the 
programs turning into monsters. They also try 
to share their products across disciplines, says 
Neil Chue Hong, the SSI’s director. For instance, 
they recently helped build a code to query 
clinical records and help monitor the spread 
of disease. They are now sharing the structure 
of that code with researchers who are trying to 
use police records to identify crime hot spots. 
“It stops researchers wasting time reinventing 
the wheel for each new application,” says Chue 
Hong.

Another solution is to bring trained com-
puter scientists into research groups, either 
permanently or as part of temporary alliances. 
Software developer Nick Barnes has set up the 
Climate Code Foundation, based in Sheffield, 
UK, to help climate researchers. He was moti-
vated by problems with NASA’s Surface Tem-
perature Analysis software, which was released 
to the public in 2007. Critics complained that 
the program, written in the scientific pro-
gramming language Fortran, would not work 
on their machines and they could therefore 
not trust what it said about global warming. In 
consultation with NASA researchers, Barnes 
rewrote the code in a newer, more transparent 

programming language — Python 
— reducing its length and mak-
ing it easier for people who aren't 
software experts to understand 
how it functions. “Because of the 
immense public interest and the 
important policy issues at stake, 
it was worth taking the time to do 
that,” says Barnes. His new code 
shows the same general warming 
trend as the original program. 

In the long term, though, Barnes 
says that there needs to be a change 
in the way that science students are 
trained. He cites Wilson’s online 
Software Carpentry course as a 
good model for how this can be 
done, to equip students with cod-
ing skills. Wilson developed the 
week-long course to introduce sci-
ence graduate students to tools that 
have been software-industry stand-
ards for 30 years — such as ‘version 
control’, which allows multiple pro-
grammers to make changes to the 
same code, while keeping track of 
all changes.

Science administrators also need 
to value programming skills more 
highly, says David Gavaghan, a 
computational biologist at the Uni-
versity of Oxford, UK. “There needs 

to be a real shift in mindset away from worry-
ing about how to get published in Nature and 
towards thinking about how to reward work 
that will be useful to the wider community.”

Gavaghan now uses the software industry’s 
‘master–apprentice’ approach to train gradu-
ate students in his lab. New software projects 
are split up into bite-sized chunks, with each 
segment assigned to a pair of programmers — 
one experienced and one novice — who work 
together on it. “It forces students to become 
consistent code-builders,” says Gavaghan. 

Bringing industrial software-development 
practices into the lab cannot come too soon, 
says Wilson. The CRU e-mail affair was a 
warning to scientists to get their houses in 
order, he says. “To all scientists out there, ask 
yourselves what you would do if, tomorrow, 
some Republican senator trains the spotlight 
on you and decides to turn you into a politi-
cal football. Could your code stand up to 
attack?” SEE WORLD VIEW, P.753

Zeeya Merali is a freelance writer in London.
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hen hackers leaked thousands of 
e-mails from the Climatic Research 
Unit (CRU) at the University of 
East Anglia in Norwich, UK, last 

year, global-warming sceptics pored over the  
documents for signs that researchers had 
manipulated data. No such evidence emerged, 
but the e-mails did reveal another problem — 
one described by a CRU employee named 
“Harry”, who often wrote of his wrestling 
matches with wonky computer software. 

“Yup, my awful programming strikes again,” 
Harry lamented in one of his notes, as he 
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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matches with wonky computer software. 

“Yup, my awful programming strikes again,” 
Harry lamented in one of his notes, as he 
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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programs cause researchers such as Harry 
to waste valuable time and energy. But the  
coding problems can sometimes cause sub-
stantial harm, and have forced some scientists 
to retract papers. 

As recognition of these issues has grown, 
software experts and scientists have started 
exploring ways to improve the codes used 
in science. Some efforts teach researchers 
important programming skills, whereas oth-
ers encourage collaboration between scientists 
and software engineers, and teach researchers 
to be more open about their code. 

A PROPER EDUCATION
Greg Wilson, a computer scientist in Toronto, 
Canada, who heads Software Carpentry — an 
online course aimed at improving the comput-
ing skills of scientists — says that he woke up to 
the problem in the 1980s, when he was work-
ing at a physics super computing facility at the 
University of Edinburgh, UK. After a series of 
small mishaps, he realized that, without formal 
training in programming, it was easy for sci-
entists trying to address some of the Universe’s 
biggest questions to inadvertently introduce 
errors into their codes, potentially “doing more 
harm than good”.

After decades griping about the poor coding 
skills of scientists he knew, Wilson decided to 

see how widespread the prob-
lem was. In 2008, he and his 
colleagues conducted an online 
survey of almost 2,000 research-
ers, from students to senior aca-
demics, who were working with 
computers in a range of sciences. 
What he found was worse than 
he had anticipated1 (see ‘Scien-
tists and their software’). “There 
are terrifying statistics showing 
that almost all of what scien-
tists know about coding is self-
taught,” says Wilson. “They just 
don’t know how bad they are.”

As a result, codes may be 
riddled with tiny errors that 
do not cause the program to 
break down, but may drasti-
cally change the scientific results 
that it spits out. One such error 
tripped up a structural-biology 
group led by Geoffrey Chang 
of the Scripps Research Insti-
tute in La Jolla, California. In 
2006, the team realized that a 
computer program supplied by 
another lab had flipped a minus 
sign, which in turn reversed two 
columns of input data, causing 
protein crystal structures that 
the group had derived to be 

inverted. Chang says that the other lab provided 
the code with the best intentions, and “you just 
trust the code to do the right job”. His group 
was forced to retract five papers published in 
Science, the Journal of Molecular Biology and 
Proceedings of the National Academy of Sciences, 
and now triple checks everything, he says. 

“How many fields have been held back, and 
how many people have had their careers dis-
rupted, because of a buggy program?” asks 
Wilson.

More-rigorous testing could help. Diane 
Kelly, a computer scientist at the Royal Mili-
tary College of Canada in Kingston, Ontario, 
says the problem is that scientists rely on “vali-
dation testing” — looking to see whether the 
answer that the code produces roughly matches 
what the scientists expect — and this can miss 
important errors2. The software industry relies 
on a different approach: breaking codes into 
manageable chunks and testing each piece 
individually, then visually inspecting the lines 
of code that stitch these chunks together (see 
‘Practicing safe software’).

Many programmers in industry are also 
trained to annotate their code clearly, so that 
others can understand its function and eas-
ily build on it. But scientists often lack these 
communication and documentation skills. 
Even if researchers lift a whole working code 

and reuse it, rather than writing their own, 
they can apply the program incorrectly if it 
lacks clear documentation. Aaron Darling, a 
computational biologist at the University of 
California, Davis, unwittingly caused such a 
mistake with his own computer code for com-
paring genomes to reconstruct evolutionary 
relationships. He had designed the program 
to work only with closely related organisms, 
but discovered that an independent group 
had used it to look at sequences far outside the 
code’s working range.

“It was lucky that I came across it, because 
their published results were totally wrong, but 
they couldn’t know that because I hadn’t clearly 
documented how my code worked,” says  
Darling. “It’s not something that I am proud of, 
but I am careful to be more clear now.” 

SLAYING THE MONSTER
Problems created by bad documentation are 
further amplified when successful codes are 
modified by others to fit new purposes. The 
result is the bane of many a graduate student 
or postdoc’s life: the ‘monster code’. Sometimes 
decades old, these codes are notoriously messy 
and become progressively more nightmarish to 
handle, say computer scientists. 

“You do have some successes, but you also 
end up with a huge stinking heap of software 
that doesn’t work very well,” says Darling.

The mangled coding of these monsters can 
sometimes make it difficult to check for errors. 
One example is a piece of code written to ana-
lyse the products of high-energy collisions at 
the Large Hadron Collider particle accelerator 
at CERN, Europe’s particle-physics laboratory 
near Geneva, Switzerland. The code had been 
developed over more than a decade by 600 
people, “some of whom are excellent program-
mers and others who do not really know how 
to code very well”, says David Rousseau, soft-
ware co ordinator for the ATLAS experiment at 
CERN. Wilson and his students tried to test the 
program, but they could not get very far: the 
code would not even run on their machines. 

Rousseau says that the ATLAS group can test 
the software only on the Linux operating sys-
tem at the moment, but is striving to make the 
code compatible with Mac computers. This is 
important, he says, “because different platforms 
expose different types of errors that may other-

wise be overlooked”.
Some software devel-

opers have found ways 
to combat the growth 
of monster code. One 
example is the Visuali-
zation Toolkit, an open-
source, freely avail  
able software system 
for three-dimensional 
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computer graphics. People can 
modify the software as they wish, 
and it is rerun each night on every 
computing platform that supports 
it, with the results published on the 
web. The process ensures that the 
software will work the same way 
on different systems. 

That kind of openness has yet 
to infiltrate the scientific research 
world, where many leading science 
journals, including Nature, Science 
and Proceedings of the National 
Academy of Sciences, do not insist 
that authors make their code avail-
able. Rather, they require that 
authors provide enough informa-
tion for results to be reproduced.

THE SEARCH FOR SOLUTIONS
In November 2009, a group of sci-
entists, lawyers, journal editors, and 
funding representatives gathered for 
the Yale Law School Data and Code 
Sharing Roundtable in New Haven, 
Connecticut, where they recom-
mended that scientists go further 
by providing links to the source-
code and the data used to generate 
results when publishing. Although 
a step in the right direction, such 
requirements don’t always solve 
the problem. Since 1996, The Journal of Money, 
Credit and Banking has required researchers to 
upload their codes and data to an archive. But a 
2006 study revealed that of 150 papers submit-
ted to the journal over the preceding decade 
that fell under this requirement, results could 
be independently replicated with the materials 
provided for fewer than 15 (ref. 3).

Proponents of openness argue that research-
ers seeking to replicate published results need 
access to the original software, but others say 
that more transparency may not help much. 
Martin Rees, president of the Royal Society 
in London, says it would be too much to ask 
reviewers to check code line by line. And in his 
own field of astro physics, results can really be 
trusted only in cases in which a number of dif-
ferent groups have written independent codes 
to perform the same task and found similar 
results. Still, he acknowledges that “how to 
trust unique codes remains an issue”.

There are signs that scientific leaders are now 
taking notice of these concerns. In 2009, the UK 
Engineering and Physical Sciences Research 
Council put out a call for 
help for scientists trying 
to create usable software, 
which led to the forma-
tion of the Software Sus-
tainability Institute (SSI) 

at the University of Edinburgh. The SSI unites 
trained software developers with scientists 
to help them add new lines to existing codes, 
allowing them to tackle extra tasks without the 
programs turning into monsters. They also try 
to share their products across disciplines, says 
Neil Chue Hong, the SSI’s director. For instance, 
they recently helped build a code to query 
clinical records and help monitor the spread 
of disease. They are now sharing the structure 
of that code with researchers who are trying to 
use police records to identify crime hot spots. 
“It stops researchers wasting time reinventing 
the wheel for each new application,” says Chue 
Hong.

Another solution is to bring trained com-
puter scientists into research groups, either 
permanently or as part of temporary alliances. 
Software developer Nick Barnes has set up the 
Climate Code Foundation, based in Sheffield, 
UK, to help climate researchers. He was moti-
vated by problems with NASA’s Surface Tem-
perature Analysis software, which was released 
to the public in 2007. Critics complained that 
the program, written in the scientific pro-
gramming language Fortran, would not work 
on their machines and they could therefore 
not trust what it said about global warming. In 
consultation with NASA researchers, Barnes 
rewrote the code in a newer, more transparent 

programming language — Python 
— reducing its length and mak-
ing it easier for people who aren't 
software experts to understand 
how it functions. “Because of the 
immense public interest and the 
important policy issues at stake, 
it was worth taking the time to do 
that,” says Barnes. His new code 
shows the same general warming 
trend as the original program. 

In the long term, though, Barnes 
says that there needs to be a change 
in the way that science students are 
trained. He cites Wilson’s online 
Software Carpentry course as a 
good model for how this can be 
done, to equip students with cod-
ing skills. Wilson developed the 
week-long course to introduce sci-
ence graduate students to tools that 
have been software-industry stand-
ards for 30 years — such as ‘version 
control’, which allows multiple pro-
grammers to make changes to the 
same code, while keeping track of 
all changes.

Science administrators also need 
to value programming skills more 
highly, says David Gavaghan, a 
computational biologist at the Uni-
versity of Oxford, UK. “There needs 

to be a real shift in mindset away from worry-
ing about how to get published in Nature and 
towards thinking about how to reward work 
that will be useful to the wider community.”

Gavaghan now uses the software industry’s 
‘master–apprentice’ approach to train gradu-
ate students in his lab. New software projects 
are split up into bite-sized chunks, with each 
segment assigned to a pair of programmers — 
one experienced and one novice — who work 
together on it. “It forces students to become 
consistent code-builders,” says Gavaghan. 

Bringing industrial software-development 
practices into the lab cannot come too soon, 
says Wilson. The CRU e-mail affair was a 
warning to scientists to get their houses in 
order, he says. “To all scientists out there, ask 
yourselves what you would do if, tomorrow, 
some Republican senator trains the spotlight 
on you and decides to turn you into a politi-
cal football. Could your code stand up to 
attack?” SEE WORLD VIEW, P.753

Zeeya Merali is a freelance writer in London.
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hen hackers leaked thousands of 
e-mails from the Climatic Research 
Unit (CRU) at the University of 
East Anglia in Norwich, UK, last 

year, global-warming sceptics pored over the  
documents for signs that researchers had 
manipulated data. No such evidence emerged, 
but the e-mails did reveal another problem — 
one described by a CRU employee named 
“Harry”, who often wrote of his wrestling 
matches with wonky computer software. 

“Yup, my awful programming strikes again,” 
Harry lamented in one of his notes, as he 
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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coding problems can sometimes cause sub-
stantial harm, and have forced some scientists 
to retract papers. 

As recognition of these issues has grown, 
software experts and scientists have started 
exploring ways to improve the codes used 
in science. Some efforts teach researchers 
important programming skills, whereas oth-
ers encourage collaboration between scientists 
and software engineers, and teach researchers 
to be more open about their code. 

A PROPER EDUCATION
Greg Wilson, a computer scientist in Toronto, 
Canada, who heads Software Carpentry — an 
online course aimed at improving the comput-
ing skills of scientists — says that he woke up to 
the problem in the 1980s, when he was work-
ing at a physics super computing facility at the 
University of Edinburgh, UK. After a series of 
small mishaps, he realized that, without formal 
training in programming, it was easy for sci-
entists trying to address some of the Universe’s 
biggest questions to inadvertently introduce 
errors into their codes, potentially “doing more 
harm than good”.

After decades griping about the poor coding 
skills of scientists he knew, Wilson decided to 

see how widespread the prob-
lem was. In 2008, he and his 
colleagues conducted an online 
survey of almost 2,000 research-
ers, from students to senior aca-
demics, who were working with 
computers in a range of sciences. 
What he found was worse than 
he had anticipated1 (see ‘Scien-
tists and their software’). “There 
are terrifying statistics showing 
that almost all of what scien-
tists know about coding is self-
taught,” says Wilson. “They just 
don’t know how bad they are.”

As a result, codes may be 
riddled with tiny errors that 
do not cause the program to 
break down, but may drasti-
cally change the scientific results 
that it spits out. One such error 
tripped up a structural-biology 
group led by Geoffrey Chang 
of the Scripps Research Insti-
tute in La Jolla, California. In 
2006, the team realized that a 
computer program supplied by 
another lab had flipped a minus 
sign, which in turn reversed two 
columns of input data, causing 
protein crystal structures that 
the group had derived to be 

inverted. Chang says that the other lab provided 
the code with the best intentions, and “you just 
trust the code to do the right job”. His group 
was forced to retract five papers published in 
Science, the Journal of Molecular Biology and 
Proceedings of the National Academy of Sciences, 
and now triple checks everything, he says. 

“How many fields have been held back, and 
how many people have had their careers dis-
rupted, because of a buggy program?” asks 
Wilson.

More-rigorous testing could help. Diane 
Kelly, a computer scientist at the Royal Mili-
tary College of Canada in Kingston, Ontario, 
says the problem is that scientists rely on “vali-
dation testing” — looking to see whether the 
answer that the code produces roughly matches 
what the scientists expect — and this can miss 
important errors2. The software industry relies 
on a different approach: breaking codes into 
manageable chunks and testing each piece 
individually, then visually inspecting the lines 
of code that stitch these chunks together (see 
‘Practicing safe software’).

Many programmers in industry are also 
trained to annotate their code clearly, so that 
others can understand its function and eas-
ily build on it. But scientists often lack these 
communication and documentation skills. 
Even if researchers lift a whole working code 

and reuse it, rather than writing their own, 
they can apply the program incorrectly if it 
lacks clear documentation. Aaron Darling, a 
computational biologist at the University of 
California, Davis, unwittingly caused such a 
mistake with his own computer code for com-
paring genomes to reconstruct evolutionary 
relationships. He had designed the program 
to work only with closely related organisms, 
but discovered that an independent group 
had used it to look at sequences far outside the 
code’s working range.

“It was lucky that I came across it, because 
their published results were totally wrong, but 
they couldn’t know that because I hadn’t clearly 
documented how my code worked,” says  
Darling. “It’s not something that I am proud of, 
but I am careful to be more clear now.” 

SLAYING THE MONSTER
Problems created by bad documentation are 
further amplified when successful codes are 
modified by others to fit new purposes. The 
result is the bane of many a graduate student 
or postdoc’s life: the ‘monster code’. Sometimes 
decades old, these codes are notoriously messy 
and become progressively more nightmarish to 
handle, say computer scientists. 

“You do have some successes, but you also 
end up with a huge stinking heap of software 
that doesn’t work very well,” says Darling.

The mangled coding of these monsters can 
sometimes make it difficult to check for errors. 
One example is a piece of code written to ana-
lyse the products of high-energy collisions at 
the Large Hadron Collider particle accelerator 
at CERN, Europe’s particle-physics laboratory 
near Geneva, Switzerland. The code had been 
developed over more than a decade by 600 
people, “some of whom are excellent program-
mers and others who do not really know how 
to code very well”, says David Rousseau, soft-
ware co ordinator for the ATLAS experiment at 
CERN. Wilson and his students tried to test the 
program, but they could not get very far: the 
code would not even run on their machines. 

Rousseau says that the ATLAS group can test 
the software only on the Linux operating sys-
tem at the moment, but is striving to make the 
code compatible with Mac computers. This is 
important, he says, “because different platforms 
expose different types of errors that may other-

wise be overlooked”.
Some software devel-

opers have found ways 
to combat the growth 
of monster code. One 
example is the Visuali-
zation Toolkit, an open-
source, freely avail  
able software system 
for three-dimensional 

SO
U

R
C

E:
 G

. W
IL

SO
N

 

7 7 6  |  N A T U R E  |  V O L  4 6 7  |  1 4  O C T O B E R  2 0 1 0
© 20  Macmillan Publishers Limited. All rights reserved10

computer graphics. People can 
modify the software as they wish, 
and it is rerun each night on every 
computing platform that supports 
it, with the results published on the 
web. The process ensures that the 
software will work the same way 
on different systems. 

That kind of openness has yet 
to infiltrate the scientific research 
world, where many leading science 
journals, including Nature, Science 
and Proceedings of the National 
Academy of Sciences, do not insist 
that authors make their code avail-
able. Rather, they require that 
authors provide enough informa-
tion for results to be reproduced.

THE SEARCH FOR SOLUTIONS
In November 2009, a group of sci-
entists, lawyers, journal editors, and 
funding representatives gathered for 
the Yale Law School Data and Code 
Sharing Roundtable in New Haven, 
Connecticut, where they recom-
mended that scientists go further 
by providing links to the source-
code and the data used to generate 
results when publishing. Although 
a step in the right direction, such 
requirements don’t always solve 
the problem. Since 1996, The Journal of Money, 
Credit and Banking has required researchers to 
upload their codes and data to an archive. But a 
2006 study revealed that of 150 papers submit-
ted to the journal over the preceding decade 
that fell under this requirement, results could 
be independently replicated with the materials 
provided for fewer than 15 (ref. 3).

Proponents of openness argue that research-
ers seeking to replicate published results need 
access to the original software, but others say 
that more transparency may not help much. 
Martin Rees, president of the Royal Society 
in London, says it would be too much to ask 
reviewers to check code line by line. And in his 
own field of astro physics, results can really be 
trusted only in cases in which a number of dif-
ferent groups have written independent codes 
to perform the same task and found similar 
results. Still, he acknowledges that “how to 
trust unique codes remains an issue”.

There are signs that scientific leaders are now 
taking notice of these concerns. In 2009, the UK 
Engineering and Physical Sciences Research 
Council put out a call for 
help for scientists trying 
to create usable software, 
which led to the forma-
tion of the Software Sus-
tainability Institute (SSI) 

at the University of Edinburgh. The SSI unites 
trained software developers with scientists 
to help them add new lines to existing codes, 
allowing them to tackle extra tasks without the 
programs turning into monsters. They also try 
to share their products across disciplines, says 
Neil Chue Hong, the SSI’s director. For instance, 
they recently helped build a code to query 
clinical records and help monitor the spread 
of disease. They are now sharing the structure 
of that code with researchers who are trying to 
use police records to identify crime hot spots. 
“It stops researchers wasting time reinventing 
the wheel for each new application,” says Chue 
Hong.

Another solution is to bring trained com-
puter scientists into research groups, either 
permanently or as part of temporary alliances. 
Software developer Nick Barnes has set up the 
Climate Code Foundation, based in Sheffield, 
UK, to help climate researchers. He was moti-
vated by problems with NASA’s Surface Tem-
perature Analysis software, which was released 
to the public in 2007. Critics complained that 
the program, written in the scientific pro-
gramming language Fortran, would not work 
on their machines and they could therefore 
not trust what it said about global warming. In 
consultation with NASA researchers, Barnes 
rewrote the code in a newer, more transparent 

programming language — Python 
— reducing its length and mak-
ing it easier for people who aren't 
software experts to understand 
how it functions. “Because of the 
immense public interest and the 
important policy issues at stake, 
it was worth taking the time to do 
that,” says Barnes. His new code 
shows the same general warming 
trend as the original program. 

In the long term, though, Barnes 
says that there needs to be a change 
in the way that science students are 
trained. He cites Wilson’s online 
Software Carpentry course as a 
good model for how this can be 
done, to equip students with cod-
ing skills. Wilson developed the 
week-long course to introduce sci-
ence graduate students to tools that 
have been software-industry stand-
ards for 30 years — such as ‘version 
control’, which allows multiple pro-
grammers to make changes to the 
same code, while keeping track of 
all changes.

Science administrators also need 
to value programming skills more 
highly, says David Gavaghan, a 
computational biologist at the Uni-
versity of Oxford, UK. “There needs 

to be a real shift in mindset away from worry-
ing about how to get published in Nature and 
towards thinking about how to reward work 
that will be useful to the wider community.”

Gavaghan now uses the software industry’s 
‘master–apprentice’ approach to train gradu-
ate students in his lab. New software projects 
are split up into bite-sized chunks, with each 
segment assigned to a pair of programmers — 
one experienced and one novice — who work 
together on it. “It forces students to become 
consistent code-builders,” says Gavaghan. 

Bringing industrial software-development 
practices into the lab cannot come too soon, 
says Wilson. The CRU e-mail affair was a 
warning to scientists to get their houses in 
order, he says. “To all scientists out there, ask 
yourselves what you would do if, tomorrow, 
some Republican senator trains the spotlight 
on you and decides to turn you into a politi-
cal football. Could your code stand up to 
attack?” SEE WORLD VIEW, P.753

Zeeya Merali is a freelance writer in London.
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hen hackers leaked thousands of 
e-mails from the Climatic Research 
Unit (CRU) at the University of 
East Anglia in Norwich, UK, last 

year, global-warming sceptics pored over the  
documents for signs that researchers had 
manipulated data. No such evidence emerged, 
but the e-mails did reveal another problem — 
one described by a CRU employee named 
“Harry”, who often wrote of his wrestling 
matches with wonky computer software. 

“Yup, my awful programming strikes again,” 
Harry lamented in one of his notes, as he 
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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programs cause researchers such as Harry 
to waste valuable time and energy. But the  
coding problems can sometimes cause sub-
stantial harm, and have forced some scientists 
to retract papers. 

As recognition of these issues has grown, 
software experts and scientists have started 
exploring ways to improve the codes used 
in science. Some efforts teach researchers 
important programming skills, whereas oth-
ers encourage collaboration between scientists 
and software engineers, and teach researchers 
to be more open about their code. 

A PROPER EDUCATION
Greg Wilson, a computer scientist in Toronto, 
Canada, who heads Software Carpentry — an 
online course aimed at improving the comput-
ing skills of scientists — says that he woke up to 
the problem in the 1980s, when he was work-
ing at a physics super computing facility at the 
University of Edinburgh, UK. After a series of 
small mishaps, he realized that, without formal 
training in programming, it was easy for sci-
entists trying to address some of the Universe’s 
biggest questions to inadvertently introduce 
errors into their codes, potentially “doing more 
harm than good”.

After decades griping about the poor coding 
skills of scientists he knew, Wilson decided to 

see how widespread the prob-
lem was. In 2008, he and his 
colleagues conducted an online 
survey of almost 2,000 research-
ers, from students to senior aca-
demics, who were working with 
computers in a range of sciences. 
What he found was worse than 
he had anticipated1 (see ‘Scien-
tists and their software’). “There 
are terrifying statistics showing 
that almost all of what scien-
tists know about coding is self-
taught,” says Wilson. “They just 
don’t know how bad they are.”

As a result, codes may be 
riddled with tiny errors that 
do not cause the program to 
break down, but may drasti-
cally change the scientific results 
that it spits out. One such error 
tripped up a structural-biology 
group led by Geoffrey Chang 
of the Scripps Research Insti-
tute in La Jolla, California. In 
2006, the team realized that a 
computer program supplied by 
another lab had flipped a minus 
sign, which in turn reversed two 
columns of input data, causing 
protein crystal structures that 
the group had derived to be 

inverted. Chang says that the other lab provided 
the code with the best intentions, and “you just 
trust the code to do the right job”. His group 
was forced to retract five papers published in 
Science, the Journal of Molecular Biology and 
Proceedings of the National Academy of Sciences, 
and now triple checks everything, he says. 

“How many fields have been held back, and 
how many people have had their careers dis-
rupted, because of a buggy program?” asks 
Wilson.

More-rigorous testing could help. Diane 
Kelly, a computer scientist at the Royal Mili-
tary College of Canada in Kingston, Ontario, 
says the problem is that scientists rely on “vali-
dation testing” — looking to see whether the 
answer that the code produces roughly matches 
what the scientists expect — and this can miss 
important errors2. The software industry relies 
on a different approach: breaking codes into 
manageable chunks and testing each piece 
individually, then visually inspecting the lines 
of code that stitch these chunks together (see 
‘Practicing safe software’).

Many programmers in industry are also 
trained to annotate their code clearly, so that 
others can understand its function and eas-
ily build on it. But scientists often lack these 
communication and documentation skills. 
Even if researchers lift a whole working code 

and reuse it, rather than writing their own, 
they can apply the program incorrectly if it 
lacks clear documentation. Aaron Darling, a 
computational biologist at the University of 
California, Davis, unwittingly caused such a 
mistake with his own computer code for com-
paring genomes to reconstruct evolutionary 
relationships. He had designed the program 
to work only with closely related organisms, 
but discovered that an independent group 
had used it to look at sequences far outside the 
code’s working range.

“It was lucky that I came across it, because 
their published results were totally wrong, but 
they couldn’t know that because I hadn’t clearly 
documented how my code worked,” says  
Darling. “It’s not something that I am proud of, 
but I am careful to be more clear now.” 

SLAYING THE MONSTER
Problems created by bad documentation are 
further amplified when successful codes are 
modified by others to fit new purposes. The 
result is the bane of many a graduate student 
or postdoc’s life: the ‘monster code’. Sometimes 
decades old, these codes are notoriously messy 
and become progressively more nightmarish to 
handle, say computer scientists. 

“You do have some successes, but you also 
end up with a huge stinking heap of software 
that doesn’t work very well,” says Darling.

The mangled coding of these monsters can 
sometimes make it difficult to check for errors. 
One example is a piece of code written to ana-
lyse the products of high-energy collisions at 
the Large Hadron Collider particle accelerator 
at CERN, Europe’s particle-physics laboratory 
near Geneva, Switzerland. The code had been 
developed over more than a decade by 600 
people, “some of whom are excellent program-
mers and others who do not really know how 
to code very well”, says David Rousseau, soft-
ware co ordinator for the ATLAS experiment at 
CERN. Wilson and his students tried to test the 
program, but they could not get very far: the 
code would not even run on their machines. 

Rousseau says that the ATLAS group can test 
the software only on the Linux operating sys-
tem at the moment, but is striving to make the 
code compatible with Mac computers. This is 
important, he says, “because different platforms 
expose different types of errors that may other-

wise be overlooked”.
Some software devel-

opers have found ways 
to combat the growth 
of monster code. One 
example is the Visuali-
zation Toolkit, an open-
source, freely avail  
able software system 
for three-dimensional 
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computer graphics. People can 
modify the software as they wish, 
and it is rerun each night on every 
computing platform that supports 
it, with the results published on the 
web. The process ensures that the 
software will work the same way 
on different systems. 

That kind of openness has yet 
to infiltrate the scientific research 
world, where many leading science 
journals, including Nature, Science 
and Proceedings of the National 
Academy of Sciences, do not insist 
that authors make their code avail-
able. Rather, they require that 
authors provide enough informa-
tion for results to be reproduced.

THE SEARCH FOR SOLUTIONS
In November 2009, a group of sci-
entists, lawyers, journal editors, and 
funding representatives gathered for 
the Yale Law School Data and Code 
Sharing Roundtable in New Haven, 
Connecticut, where they recom-
mended that scientists go further 
by providing links to the source-
code and the data used to generate 
results when publishing. Although 
a step in the right direction, such 
requirements don’t always solve 
the problem. Since 1996, The Journal of Money, 
Credit and Banking has required researchers to 
upload their codes and data to an archive. But a 
2006 study revealed that of 150 papers submit-
ted to the journal over the preceding decade 
that fell under this requirement, results could 
be independently replicated with the materials 
provided for fewer than 15 (ref. 3).

Proponents of openness argue that research-
ers seeking to replicate published results need 
access to the original software, but others say 
that more transparency may not help much. 
Martin Rees, president of the Royal Society 
in London, says it would be too much to ask 
reviewers to check code line by line. And in his 
own field of astro physics, results can really be 
trusted only in cases in which a number of dif-
ferent groups have written independent codes 
to perform the same task and found similar 
results. Still, he acknowledges that “how to 
trust unique codes remains an issue”.

There are signs that scientific leaders are now 
taking notice of these concerns. In 2009, the UK 
Engineering and Physical Sciences Research 
Council put out a call for 
help for scientists trying 
to create usable software, 
which led to the forma-
tion of the Software Sus-
tainability Institute (SSI) 

at the University of Edinburgh. The SSI unites 
trained software developers with scientists 
to help them add new lines to existing codes, 
allowing them to tackle extra tasks without the 
programs turning into monsters. They also try 
to share their products across disciplines, says 
Neil Chue Hong, the SSI’s director. For instance, 
they recently helped build a code to query 
clinical records and help monitor the spread 
of disease. They are now sharing the structure 
of that code with researchers who are trying to 
use police records to identify crime hot spots. 
“It stops researchers wasting time reinventing 
the wheel for each new application,” says Chue 
Hong.

Another solution is to bring trained com-
puter scientists into research groups, either 
permanently or as part of temporary alliances. 
Software developer Nick Barnes has set up the 
Climate Code Foundation, based in Sheffield, 
UK, to help climate researchers. He was moti-
vated by problems with NASA’s Surface Tem-
perature Analysis software, which was released 
to the public in 2007. Critics complained that 
the program, written in the scientific pro-
gramming language Fortran, would not work 
on their machines and they could therefore 
not trust what it said about global warming. In 
consultation with NASA researchers, Barnes 
rewrote the code in a newer, more transparent 

programming language — Python 
— reducing its length and mak-
ing it easier for people who aren't 
software experts to understand 
how it functions. “Because of the 
immense public interest and the 
important policy issues at stake, 
it was worth taking the time to do 
that,” says Barnes. His new code 
shows the same general warming 
trend as the original program. 

In the long term, though, Barnes 
says that there needs to be a change 
in the way that science students are 
trained. He cites Wilson’s online 
Software Carpentry course as a 
good model for how this can be 
done, to equip students with cod-
ing skills. Wilson developed the 
week-long course to introduce sci-
ence graduate students to tools that 
have been software-industry stand-
ards for 30 years — such as ‘version 
control’, which allows multiple pro-
grammers to make changes to the 
same code, while keeping track of 
all changes.

Science administrators also need 
to value programming skills more 
highly, says David Gavaghan, a 
computational biologist at the Uni-
versity of Oxford, UK. “There needs 

to be a real shift in mindset away from worry-
ing about how to get published in Nature and 
towards thinking about how to reward work 
that will be useful to the wider community.”

Gavaghan now uses the software industry’s 
‘master–apprentice’ approach to train gradu-
ate students in his lab. New software projects 
are split up into bite-sized chunks, with each 
segment assigned to a pair of programmers — 
one experienced and one novice — who work 
together on it. “It forces students to become 
consistent code-builders,” says Gavaghan. 

Bringing industrial software-development 
practices into the lab cannot come too soon, 
says Wilson. The CRU e-mail affair was a 
warning to scientists to get their houses in 
order, he says. “To all scientists out there, ask 
yourselves what you would do if, tomorrow, 
some Republican senator trains the spotlight 
on you and decides to turn you into a politi-
cal football. Could your code stand up to 
attack?” SEE WORLD VIEW, P.753

Zeeya Merali is a freelance writer in London.

1. Hannay, J. E. et al. Proc. 2nd Int. Workshop on 
Software Engineering for Computational Science and 
Engineering (2009).

2. Kelly, D. IEEE Software 24, 119–120 (2007).
3. McCullough, B. D., McGeary, K. A. & Harrison, T. D,  

J. Money Credit Banking 38, 1093–1107 (2006).

 NATURE.COM
To discuss 
programming in 
research, visit:
go.nature.com/ed3hsl

1 4  O C T O B E R  2 0 1 0  |  V O L  4 6 7  |  N A T U R E  |  7 7 7

FEATURE NEWS

© 20  Macmillan Publishers Limited. All rights reserved10

Z. Merali, Nature 467 (2010), 775
Copyright © 2010, 2018 Springer Nature.



hen hackers leaked thousands of 
e-mails from the Climatic Research 
Unit (CRU) at the University of 
East Anglia in Norwich, UK, last 

year, global-warming sceptics pored over the  
documents for signs that researchers had 
manipulated data. No such evidence emerged, 
but the e-mails did reveal another problem — 
one described by a CRU employee named 
“Harry”, who often wrote of his wrestling 
matches with wonky computer software. 

“Yup, my awful programming strikes again,” 
Harry lamented in one of his notes, as he 
attempted to correct a code analysing weather-
station data from Mexico.

Although Harry’s frustrations did not ulti-
mately compromise CRU’s work, his difficul-
ties will strike a chord with scientists in a wide 
range of disciplines who do a large amount of 
coding. Researchers are spending more and 
more time writing computer software to model 

biological structures, simulate the early evolu-
tion of the Universe and analyse past climate 
data, among other topics. But programming 
experts have little faith that most scientists are 
up to the task.

A quarter of a century ago, most of the com-
puting work done by scientists was relatively 
straightforward. But as computers and pro-
gramming tools have grown more complex, 
scientists have hit a “steep learning curve”, says 
James Hack, director of the US National Center 
for Computational Sciences at Oak Ridge 
National Laboratory in Tennessee. “The level 
of effort and skills needed to keep up aren’t in 
the wheelhouse of the average scientist.”

As a general rule, researchers do not test or 
document their programs rigorously, and they 
rarely release their codes, making it almost 
impossible to reproduce and verify published 
results generated by scientific software, say 
computer scientists. At best, poorly written 
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programs cause researchers such as Harry 
to waste valuable time and energy. But the  
coding problems can sometimes cause sub-
stantial harm, and have forced some scientists 
to retract papers. 

As recognition of these issues has grown, 
software experts and scientists have started 
exploring ways to improve the codes used 
in science. Some efforts teach researchers 
important programming skills, whereas oth-
ers encourage collaboration between scientists 
and software engineers, and teach researchers 
to be more open about their code. 

A PROPER EDUCATION
Greg Wilson, a computer scientist in Toronto, 
Canada, who heads Software Carpentry — an 
online course aimed at improving the comput-
ing skills of scientists — says that he woke up to 
the problem in the 1980s, when he was work-
ing at a physics super computing facility at the 
University of Edinburgh, UK. After a series of 
small mishaps, he realized that, without formal 
training in programming, it was easy for sci-
entists trying to address some of the Universe’s 
biggest questions to inadvertently introduce 
errors into their codes, potentially “doing more 
harm than good”.

After decades griping about the poor coding 
skills of scientists he knew, Wilson decided to 

see how widespread the prob-
lem was. In 2008, he and his 
colleagues conducted an online 
survey of almost 2,000 research-
ers, from students to senior aca-
demics, who were working with 
computers in a range of sciences. 
What he found was worse than 
he had anticipated1 (see ‘Scien-
tists and their software’). “There 
are terrifying statistics showing 
that almost all of what scien-
tists know about coding is self-
taught,” says Wilson. “They just 
don’t know how bad they are.”

As a result, codes may be 
riddled with tiny errors that 
do not cause the program to 
break down, but may drasti-
cally change the scientific results 
that it spits out. One such error 
tripped up a structural-biology 
group led by Geoffrey Chang 
of the Scripps Research Insti-
tute in La Jolla, California. In 
2006, the team realized that a 
computer program supplied by 
another lab had flipped a minus 
sign, which in turn reversed two 
columns of input data, causing 
protein crystal structures that 
the group had derived to be 

inverted. Chang says that the other lab provided 
the code with the best intentions, and “you just 
trust the code to do the right job”. His group 
was forced to retract five papers published in 
Science, the Journal of Molecular Biology and 
Proceedings of the National Academy of Sciences, 
and now triple checks everything, he says. 

“How many fields have been held back, and 
how many people have had their careers dis-
rupted, because of a buggy program?” asks 
Wilson.

More-rigorous testing could help. Diane 
Kelly, a computer scientist at the Royal Mili-
tary College of Canada in Kingston, Ontario, 
says the problem is that scientists rely on “vali-
dation testing” — looking to see whether the 
answer that the code produces roughly matches 
what the scientists expect — and this can miss 
important errors2. The software industry relies 
on a different approach: breaking codes into 
manageable chunks and testing each piece 
individually, then visually inspecting the lines 
of code that stitch these chunks together (see 
‘Practicing safe software’).

Many programmers in industry are also 
trained to annotate their code clearly, so that 
others can understand its function and eas-
ily build on it. But scientists often lack these 
communication and documentation skills. 
Even if researchers lift a whole working code 

and reuse it, rather than writing their own, 
they can apply the program incorrectly if it 
lacks clear documentation. Aaron Darling, a 
computational biologist at the University of 
California, Davis, unwittingly caused such a 
mistake with his own computer code for com-
paring genomes to reconstruct evolutionary 
relationships. He had designed the program 
to work only with closely related organisms, 
but discovered that an independent group 
had used it to look at sequences far outside the 
code’s working range.

“It was lucky that I came across it, because 
their published results were totally wrong, but 
they couldn’t know that because I hadn’t clearly 
documented how my code worked,” says  
Darling. “It’s not something that I am proud of, 
but I am careful to be more clear now.” 

SLAYING THE MONSTER
Problems created by bad documentation are 
further amplified when successful codes are 
modified by others to fit new purposes. The 
result is the bane of many a graduate student 
or postdoc’s life: the ‘monster code’. Sometimes 
decades old, these codes are notoriously messy 
and become progressively more nightmarish to 
handle, say computer scientists. 

“You do have some successes, but you also 
end up with a huge stinking heap of software 
that doesn’t work very well,” says Darling.

The mangled coding of these monsters can 
sometimes make it difficult to check for errors. 
One example is a piece of code written to ana-
lyse the products of high-energy collisions at 
the Large Hadron Collider particle accelerator 
at CERN, Europe’s particle-physics laboratory 
near Geneva, Switzerland. The code had been 
developed over more than a decade by 600 
people, “some of whom are excellent program-
mers and others who do not really know how 
to code very well”, says David Rousseau, soft-
ware co ordinator for the ATLAS experiment at 
CERN. Wilson and his students tried to test the 
program, but they could not get very far: the 
code would not even run on their machines. 

Rousseau says that the ATLAS group can test 
the software only on the Linux operating sys-
tem at the moment, but is striving to make the 
code compatible with Mac computers. This is 
important, he says, “because different platforms 
expose different types of errors that may other-

wise be overlooked”.
Some software devel-

opers have found ways 
to combat the growth 
of monster code. One 
example is the Visuali-
zation Toolkit, an open-
source, freely avail  
able software system 
for three-dimensional 
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computer graphics. People can 
modify the software as they wish, 
and it is rerun each night on every 
computing platform that supports 
it, with the results published on the 
web. The process ensures that the 
software will work the same way 
on different systems. 

That kind of openness has yet 
to infiltrate the scientific research 
world, where many leading science 
journals, including Nature, Science 
and Proceedings of the National 
Academy of Sciences, do not insist 
that authors make their code avail-
able. Rather, they require that 
authors provide enough informa-
tion for results to be reproduced.

THE SEARCH FOR SOLUTIONS
In November 2009, a group of sci-
entists, lawyers, journal editors, and 
funding representatives gathered for 
the Yale Law School Data and Code 
Sharing Roundtable in New Haven, 
Connecticut, where they recom-
mended that scientists go further 
by providing links to the source-
code and the data used to generate 
results when publishing. Although 
a step in the right direction, such 
requirements don’t always solve 
the problem. Since 1996, The Journal of Money, 
Credit and Banking has required researchers to 
upload their codes and data to an archive. But a 
2006 study revealed that of 150 papers submit-
ted to the journal over the preceding decade 
that fell under this requirement, results could 
be independently replicated with the materials 
provided for fewer than 15 (ref. 3).

Proponents of openness argue that research-
ers seeking to replicate published results need 
access to the original software, but others say 
that more transparency may not help much. 
Martin Rees, president of the Royal Society 
in London, says it would be too much to ask 
reviewers to check code line by line. And in his 
own field of astro physics, results can really be 
trusted only in cases in which a number of dif-
ferent groups have written independent codes 
to perform the same task and found similar 
results. Still, he acknowledges that “how to 
trust unique codes remains an issue”.

There are signs that scientific leaders are now 
taking notice of these concerns. In 2009, the UK 
Engineering and Physical Sciences Research 
Council put out a call for 
help for scientists trying 
to create usable software, 
which led to the forma-
tion of the Software Sus-
tainability Institute (SSI) 

at the University of Edinburgh. The SSI unites 
trained software developers with scientists 
to help them add new lines to existing codes, 
allowing them to tackle extra tasks without the 
programs turning into monsters. They also try 
to share their products across disciplines, says 
Neil Chue Hong, the SSI’s director. For instance, 
they recently helped build a code to query 
clinical records and help monitor the spread 
of disease. They are now sharing the structure 
of that code with researchers who are trying to 
use police records to identify crime hot spots. 
“It stops researchers wasting time reinventing 
the wheel for each new application,” says Chue 
Hong.

Another solution is to bring trained com-
puter scientists into research groups, either 
permanently or as part of temporary alliances. 
Software developer Nick Barnes has set up the 
Climate Code Foundation, based in Sheffield, 
UK, to help climate researchers. He was moti-
vated by problems with NASA’s Surface Tem-
perature Analysis software, which was released 
to the public in 2007. Critics complained that 
the program, written in the scientific pro-
gramming language Fortran, would not work 
on their machines and they could therefore 
not trust what it said about global warming. In 
consultation with NASA researchers, Barnes 
rewrote the code in a newer, more transparent 

programming language — Python 
— reducing its length and mak-
ing it easier for people who aren't 
software experts to understand 
how it functions. “Because of the 
immense public interest and the 
important policy issues at stake, 
it was worth taking the time to do 
that,” says Barnes. His new code 
shows the same general warming 
trend as the original program. 

In the long term, though, Barnes 
says that there needs to be a change 
in the way that science students are 
trained. He cites Wilson’s online 
Software Carpentry course as a 
good model for how this can be 
done, to equip students with cod-
ing skills. Wilson developed the 
week-long course to introduce sci-
ence graduate students to tools that 
have been software-industry stand-
ards for 30 years — such as ‘version 
control’, which allows multiple pro-
grammers to make changes to the 
same code, while keeping track of 
all changes.

Science administrators also need 
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versity of Oxford, UK. “There needs 

to be a real shift in mindset away from worry-
ing about how to get published in Nature and 
towards thinking about how to reward work 
that will be useful to the wider community.”

Gavaghan now uses the software industry’s 
‘master–apprentice’ approach to train gradu-
ate students in his lab. New software projects 
are split up into bite-sized chunks, with each 
segment assigned to a pair of programmers — 
one experienced and one novice — who work 
together on it. “It forces students to become 
consistent code-builders,” says Gavaghan. 

Bringing industrial software-development 
practices into the lab cannot come too soon, 
says Wilson. The CRU e-mail affair was a 
warning to scientists to get their houses in 
order, he says. “To all scientists out there, ask 
yourselves what you would do if, tomorrow, 
some Republican senator trains the spotlight 
on you and decides to turn you into a politi-
cal football. Could your code stand up to 
attack?” SEE WORLD VIEW, P.753

Zeeya Merali is a freelance writer in London.

1. Hannay, J. E. et al. Proc. 2nd Int. Workshop on 
Software Engineering for Computational Science and 
Engineering (2009).

2. Kelly, D. IEEE Software 24, 119–120 (2007).
3. McCullough, B. D., McGeary, K. A. & Harrison, T. D,  

J. Money Credit Banking 38, 1093–1107 (2006).

 NATURE.COM
To discuss 
programming in 
research, visit:
go.nature.com/ed3hsl

1 4  O C T O B E R  2 0 1 0  |  V O L  4 6 7  |  N A T U R E  |  7 7 7

FEATURE NEWS

© 20  Macmillan Publishers Limited. All rights reserved10

Z. Merali, Nature 467 (2010), 775
Copyright © 2010, 2018 Springer Nature.



Editorial

Ten Simple Rules for Reproducible Computational
Research
Geir Kjetil Sandve1,2*, Anton Nekrutenko3, James Taylor4, Eivind Hovig1,5,6

1 Department of Informatics, University of Oslo, Blindern, Oslo, Norway, 2 Centre for Cancer Biomedicine, University of Oslo, Blindern, Oslo, Norway, 3 Department of

Biochemistry and Molecular Biology and The Huck Institutes for the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America,

4 Department of Biology and Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, United States of America, 5 Department of Tumor

Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway, 6 Institute for Medical Informatics, The

Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway

Replication is the cornerstone of a
cumulative science [1]. However, new
tools and technologies, massive amounts
of data, interdisciplinary approaches, and
the complexity of the questions being
asked are complicating replication efforts,
as are increased pressures on scientists to
advance their research [2]. As full replica-
tion of studies on independently collected
data is often not feasible, there has recently
been a call for reproducible research as an
attainable minimum standard for assessing
the value of scientific claims [3]. This
requires that papers in experimental
science describe the results and provide a
sufficiently clear protocol to allow success-
ful repetition and extension of analyses
based on original data [4].

The importance of replication and
reproducibility has recently been exempli-
fied through studies showing that scientific
papers commonly leave out experimental
details essential for reproduction [5],
studies showing difficulties with replicating
published experimental results [6], an
increase in retracted papers [7], and
through a high number of failing clinical
trials [8,9]. This has led to discussions on
how individual researchers, institutions,
funding bodies, and journals can establish
routines that increase transparency and
reproducibility. In order to foster such
aspects, it has been suggested that the
scientific community needs to develop a
‘‘culture of reproducibility’’ for computa-
tional science, and to require it for
published claims [3].

We want to emphasize that reproduc-
ibility is not only a moral responsibility
with respect to the scientific field, but that
a lack of reproducibility can also be a
burden for you as an individual research-
er. As an example, a good practice of
reproducibility is necessary in order to
allow previously developed methodology
to be effectively applied on new data, or to
allow reuse of code and results for new
projects. In other words, good habits of
reproducibility may actually turn out to be
a time-saver in the longer run.

We further note that reproducibility is
just as much about the habits that ensure
reproducible research as the technologies
that can make these processes efficient and
realistic. Each of the following ten rules
captures a specific aspect of reproducibil-
ity, and discusses what is needed in terms
of information handling and tracking of
procedures. If you are taking a bare-bones
approach to bioinformatics analysis, i.e.,
running various custom scripts from the
command line, you will probably need to
handle each rule explicitly. If you are
instead performing your analyses through
an integrated framework (such as Gene-
Pattern [10], Galaxy [11], LONI pipeline
[12], or Taverna [13]), the system may
already provide full or partial support for
most of the rules. What is needed on your
part is then merely the knowledge of how
to exploit these existing possibilities.

In a pragmatic setting, with publication
pressure and deadlines, one may face the
need to make a trade-off between the
ideals of reproducibility and the need to
get the research out while it is still relevant.
This trade-off becomes more important
when considering that a large part of the
analyses being tried out never end up
yielding any results. However, frequently
one will, with the wisdom of hindsight,
contemplate the missed opportunity to
ensure reproducibility, as it may already
be too late to take the necessary notes from
memory (or at least much more difficult

than to do it while underway). We believe
that the rewards of reproducibility will
compensate for the risk of having spent
valuable time developing an annotated
catalog of analyses that turned out as blind
alleys.

As a minimal requirement, you should
at least be able to reproduce the results
yourself. This would satisfy the most basic
requirements of sound research, allowing
any substantial future questioning of the
research to be met with a precise expla-
nation. Although it may sound like a very
weak requirement, even this level of
reproducibility will often require a certain
level of care in order to be met. There will
for a given analysis be an exponential
number of possible combinations of soft-
ware versions, parameter values, pre-
processing steps, and so on, meaning that
a failure to take notes may make exact
reproduction essentially impossible.

With this basic level of reproducibility in
place, there is much more that can be
wished for. An obvious extension is to go
from a level where you can reproduce
results in case of a critical situation to a
level where you can practically and
routinely reuse your previous work and
increase your productivity. A second
extension is to ensure that peers have a
practical possibility of reproducing your
results, which can lead to increased trust
in, interest for, and citations of your work
[6,14].
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the value of scientific claims [3]. This
requires that papers in experimental
science describe the results and provide a
sufficiently clear protocol to allow success-
ful repetition and extension of analyses
based on original data [4].

The importance of replication and
reproducibility has recently been exempli-
fied through studies showing that scientific
papers commonly leave out experimental
details essential for reproduction [5],
studies showing difficulties with replicating
published experimental results [6], an
increase in retracted papers [7], and
through a high number of failing clinical
trials [8,9]. This has led to discussions on
how individual researchers, institutions,
funding bodies, and journals can establish
routines that increase transparency and
reproducibility. In order to foster such
aspects, it has been suggested that the
scientific community needs to develop a
‘‘culture of reproducibility’’ for computa-
tional science, and to require it for
published claims [3].

We want to emphasize that reproduc-
ibility is not only a moral responsibility
with respect to the scientific field, but that
a lack of reproducibility can also be a
burden for you as an individual research-
er. As an example, a good practice of
reproducibility is necessary in order to
allow previously developed methodology
to be effectively applied on new data, or to
allow reuse of code and results for new
projects. In other words, good habits of
reproducibility may actually turn out to be
a time-saver in the longer run.

We further note that reproducibility is
just as much about the habits that ensure
reproducible research as the technologies
that can make these processes efficient and
realistic. Each of the following ten rules
captures a specific aspect of reproducibil-
ity, and discusses what is needed in terms
of information handling and tracking of
procedures. If you are taking a bare-bones
approach to bioinformatics analysis, i.e.,
running various custom scripts from the
command line, you will probably need to
handle each rule explicitly. If you are
instead performing your analyses through
an integrated framework (such as Gene-
Pattern [10], Galaxy [11], LONI pipeline
[12], or Taverna [13]), the system may
already provide full or partial support for
most of the rules. What is needed on your
part is then merely the knowledge of how
to exploit these existing possibilities.

In a pragmatic setting, with publication
pressure and deadlines, one may face the
need to make a trade-off between the
ideals of reproducibility and the need to
get the research out while it is still relevant.
This trade-off becomes more important
when considering that a large part of the
analyses being tried out never end up
yielding any results. However, frequently
one will, with the wisdom of hindsight,
contemplate the missed opportunity to
ensure reproducibility, as it may already
be too late to take the necessary notes from
memory (or at least much more difficult

than to do it while underway). We believe
that the rewards of reproducibility will
compensate for the risk of having spent
valuable time developing an annotated
catalog of analyses that turned out as blind
alleys.

As a minimal requirement, you should
at least be able to reproduce the results
yourself. This would satisfy the most basic
requirements of sound research, allowing
any substantial future questioning of the
research to be met with a precise expla-
nation. Although it may sound like a very
weak requirement, even this level of
reproducibility will often require a certain
level of care in order to be met. There will
for a given analysis be an exponential
number of possible combinations of soft-
ware versions, parameter values, pre-
processing steps, and so on, meaning that
a failure to take notes may make exact
reproduction essentially impossible.

With this basic level of reproducibility in
place, there is much more that can be
wished for. An obvious extension is to go
from a level where you can reproduce
results in case of a critical situation to a
level where you can practically and
routinely reuse your previous work and
increase your productivity. A second
extension is to ensure that peers have a
practical possibility of reproducing your
results, which can lead to increased trust
in, interest for, and citations of your work
[6,14].
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1. For every result, keep track how it was 
produced


2. Avoid manual data manipulation steps


3. Archive the exact versions of all 
external programs used


4. Version control all scripts


5. Record all intermediate results, when 
possible in standardized formats


6. For analyses that include randomness, 
note underlying random seeds


7. Always store raw data behind plots


8. Generate hierarchical analysis output, 
allowing layers of increasing details to 
be inspected


9. Connect textual statements to the 
underlying result


10.Provide public access to scripts, runs, 
and results



1. Look before you leap


2. Develop a prototype first


3. Make your code understandable 
to others (and yourself)


4. Don’t underestimate the 
complexity of the task


5. Understand the mathematical, 
numerical, and computational 
methods underpinning your 
work


6. Use pictures: They really are 
worth a thousand words


7. Version control everything 

8. Test everything


9. Share everything


10.Keep going!
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In order to attempt to understand the
complexity inherent in nature, mathe-
matical, statistical and computational
techniques are increasingly being em-
ployed in the life sciences. In particular,
the use and development of software
tools is becoming vital for investigating
scientific hypotheses, and a wide range
of scientists are finding software devel-
opment playing a more central role in
their day-to-day research. In fields such
as biology and ecology, there has been a
noticeable trend towards the use of
quantitative methods for both making
sense of ever-increasing amounts of
data [1] and building or selecting
models [2].

As Research Fellows of the ‘‘2020
Science’’ project (http://www.2020
science.net), funded jointly by the EPSRC
(Engineering and Physical Sciences Re-
search Council) and Microsoft Research,
we have firsthand experience of the
challenges associated with carrying out
multidisciplinary computation-based sci-
ence [3–5]. In this paper we offer a
jargon-free guide to best practice when
developing and using software for scientific
research. While many guides to software
development exist, they are often aimed at
computer scientists [6] or concentrate on
large open-source projects [7]; the present
guide is aimed specifically at the vast
majority of scientific researchers: those
without formal training in computer
science. We present our ten simple rules
with the aim of enabling scientists to be
more effective in undertaking research and
therefore maximise the impact of this
research within the scientific community.
While these rules are described individu-
ally, collectively they form a single vision
for how to approach the practical side of
computational science.

Our rules are presented in roughly the
chronological order in which they should
be undertaken, beginning with things that,
as a computational scientist, you should do

before you even think about writing any
code. For each rule, guides on getting
started, links to relevant tutorials, and
further reading are provided in the
supplementary material (Text S1).

Rule 1: Look Before You Leap

One of the key considerations in the
development of any method, computa-
tional or otherwise, is whether it has
previously been approached by someone
else. A growing wealth of software
toolboxes and libraries exist to tackle
many problems. However, assessing the
range and quality of what is available can
be hard, especially when addressing
nontraditional problems. A simple but
often-overlooked approach is to conduct
a software literature review to ascertain
what software is available and has been
successfully employed. Software reposi-
tories (e.g., GitHub, https://github.
com/, and SourceForge, http://
sourceforge.net/) are a good place to
begin a review. Furthermore, engaging
with the network of researchers sur-
rounding your own is invaluable; see
[8] and [9] for advice on this. If your
coworkers write software in the same
language or use particular toolboxes, you
may be able to consult their expertise in

order to accelerate and provide support
for your work.

Rule 2: Develop a Prototype
First

Before writing any code, it is imperative
to clarify what you are trying to imple-
ment: what functionality do you require,
and what interfaces do you need? When
implementing your latest developments,
you should first begin by considering a
prototype (i.e., a simplified version of the
full system or algorithm) to gain insight
and to guide the next steps. This is equally
relevant whether building on existing code
or starting from scratch. By prototyping
new functionality and building code up
incrementally, you can check that each
element of your code operates as expected
(and each incremental development can
be tested; see Rule 8). Breaking your
problem up into smaller elements like this
will also help to provide structure to your
code and will make it much easier when
you subsequently need to extend it. From
a practical point of view, it will usually be
easier to prototype mathematical and
statistical methods in a ‘‘higher-level’’
language, for example Matlab, R, or
Python. Although these languages can be
slower to run than optimized code in a
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In order to attempt to understand the
complexity inherent in nature, mathe-
matical, statistical and computational
techniques are increasingly being em-
ployed in the life sciences. In particular,
the use and development of software
tools is becoming vital for investigating
scientific hypotheses, and a wide range
of scientists are finding software devel-
opment playing a more central role in
their day-to-day research. In fields such
as biology and ecology, there has been a
noticeable trend towards the use of
quantitative methods for both making
sense of ever-increasing amounts of
data [1] and building or selecting
models [2].

As Research Fellows of the ‘‘2020
Science’’ project (http://www.2020
science.net), funded jointly by the EPSRC
(Engineering and Physical Sciences Re-
search Council) and Microsoft Research,
we have firsthand experience of the
challenges associated with carrying out
multidisciplinary computation-based sci-
ence [3–5]. In this paper we offer a
jargon-free guide to best practice when
developing and using software for scientific
research. While many guides to software
development exist, they are often aimed at
computer scientists [6] or concentrate on
large open-source projects [7]; the present
guide is aimed specifically at the vast
majority of scientific researchers: those
without formal training in computer
science. We present our ten simple rules
with the aim of enabling scientists to be
more effective in undertaking research and
therefore maximise the impact of this
research within the scientific community.
While these rules are described individu-
ally, collectively they form a single vision
for how to approach the practical side of
computational science.

Our rules are presented in roughly the
chronological order in which they should
be undertaken, beginning with things that,
as a computational scientist, you should do

before you even think about writing any
code. For each rule, guides on getting
started, links to relevant tutorials, and
further reading are provided in the
supplementary material (Text S1).

Rule 1: Look Before You Leap

One of the key considerations in the
development of any method, computa-
tional or otherwise, is whether it has
previously been approached by someone
else. A growing wealth of software
toolboxes and libraries exist to tackle
many problems. However, assessing the
range and quality of what is available can
be hard, especially when addressing
nontraditional problems. A simple but
often-overlooked approach is to conduct
a software literature review to ascertain
what software is available and has been
successfully employed. Software reposi-
tories (e.g., GitHub, https://github.
com/, and SourceForge, http://
sourceforge.net/) are a good place to
begin a review. Furthermore, engaging
with the network of researchers sur-
rounding your own is invaluable; see
[8] and [9] for advice on this. If your
coworkers write software in the same
language or use particular toolboxes, you
may be able to consult their expertise in

order to accelerate and provide support
for your work.

Rule 2: Develop a Prototype
First

Before writing any code, it is imperative
to clarify what you are trying to imple-
ment: what functionality do you require,
and what interfaces do you need? When
implementing your latest developments,
you should first begin by considering a
prototype (i.e., a simplified version of the
full system or algorithm) to gain insight
and to guide the next steps. This is equally
relevant whether building on existing code
or starting from scratch. By prototyping
new functionality and building code up
incrementally, you can check that each
element of your code operates as expected
(and each incremental development can
be tested; see Rule 8). Breaking your
problem up into smaller elements like this
will also help to provide structure to your
code and will make it much easier when
you subsequently need to extend it. From
a practical point of view, it will usually be
easier to prototype mathematical and
statistical methods in a ‘‘higher-level’’
language, for example Matlab, R, or
Python. Although these languages can be
slower to run than optimized code in a
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1.Write programs for people, not computers 
(a) keep program units small

(b) use meaningful, distinctive, consistent names

(c) make style and formatting consistent  


2. Let the computer do the work 
(a) Make the computer repeat tasks

(b) Save recent commands in file for re-use

(c) Use a build tool to automate workflows


3. Make incremental changes 
(a) Work in small steps with frequent feedback and course correction (“agile”)

(b) Use a version control system (VCS)

(c) Version-control all manually created content


4. Don’t repeat yourself (or others) 
(a) Every piece of data must have a single authoritative representation in the system

(b) Modularize code (instead of copying and pasting)

(c) Re-use code instead of rewriting it
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Introduction

Scientists spend an increasing amount of time building and
using software. However, most scientists are never taught how to
do this efficiently. As a result, many are unaware of tools and
practices that would allow them to write more reliable and
maintainable code with less effort. We describe a set of best
practices for scientific software development that have solid
foundations in research and experience, and that improve
scientists’ productivity and the reliability of their software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively on
computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science revolves
around developing new algorithms, managing and analyzing the
large amounts of data that are generated in single research
projects, combining disparate datasets to assess synthetic problems,
and other computational tasks.

Scientists typically develop their own software for these purposes
because doing so requires substantial domain-specific knowledge.
As a result, recent studies have found that scientists typically spend
30% or more of their time developing software [1,2]. However,
90% or more of them are primarily self-taught [1,2], and therefore
lack exposure to basic software development practices such as
writing maintainable code, using version control and issue
trackers, code reviews, unit testing, and task automation.

We believe that software is just another kind of experimental
apparatus [3] and should be built, checked, and used as carefully
as any physical apparatus. However, while most scientists are
careful to validate their laboratory and field equipment, most do
not know how reliable their software is [4,5]. This can lead to
serious errors impacting the central conclusions of published
research [6]: recent high-profile retractions, technical comments,
and corrections because of errors in computational methods
include papers in Science [7,8], PNAS [9], the Journal of Molecular
Biology [10], Ecology Letters [11,12], the Journal of Mammalogy [13],
Journal of the American College of Cardiology [14], Hypertension [15], and
The American Economic Review [16].

In addition, because software is often used for more than a single
project, and is often reused by other scientists, computing errors can
have disproportionate impacts on the scientific process. This type of
cascading impact caused several prominent retractions when an

error from another group’s code was not discovered until after
publication [6]. As with bench experiments, not everything must be
done to the most exacting standards; however, scientists need to be
aware of best practices both to improve their own approaches and
for reviewing computational work by others.

This paper describes a set of practices that are easy to adopt and
have proven effective in many research settings. Our recommenda-
tions are based on several decades of collective experience both
building scientific software and teaching computing to scientists
[17,18], reports from many other groups [19–25], guidelines for
commercial and open source software development [26,27], and on
empirical studies of scientific computing [28–31] and software
development in general (summarized in [32]). None of these practices
will guarantee efficient, error-free software development, but used in
concert they will reduce the number of errors in scientific software,
make it easier to reuse, and save the authors of the software time and
effort that can used for focusing on the underlying scientific questions.

Our practices are summarized in Box 1; labels in the main text
such as ‘‘(1a)’’ refer to items in that summary. For reasons of space,
we do not discuss the equally important (but independent) issues of
reproducible research, publication and citation of code and data,
and open science. We do believe, however, that all of these will be
much easier to implement if scientists have the skills we describe.
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5. Plan for mistakes 
(a) add assertions to programs to check their operation 

(b) Use an off-the-shelf unit testing library

(c) Turn bugs into test cases

(d) Use a symbolic debugger  


6. Optimize software only after it works correctly 
(a) Use a profiler to identify bottlenecks

(b) Write code in the highest-level language possible


7. Document design and purpose, not mechanics 
(a) Document interfaces and reasons, not implementation 

(b) Refactor code in preference to explaining how it works

(c) Embed the documentation in the software (and use documentation generators)


8. Collaborate 
(a) Use pre-merge code reviews

(b) Use pair programming (bringing someone new up to speed, tricky problems)

(c) Use an issue tracking tool
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Introduction

Scientists spend an increasing amount of time building and
using software. However, most scientists are never taught how to
do this efficiently. As a result, many are unaware of tools and
practices that would allow them to write more reliable and
maintainable code with less effort. We describe a set of best
practices for scientific software development that have solid
foundations in research and experience, and that improve
scientists’ productivity and the reliability of their software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively on
computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science revolves
around developing new algorithms, managing and analyzing the
large amounts of data that are generated in single research
projects, combining disparate datasets to assess synthetic problems,
and other computational tasks.

Scientists typically develop their own software for these purposes
because doing so requires substantial domain-specific knowledge.
As a result, recent studies have found that scientists typically spend
30% or more of their time developing software [1,2]. However,
90% or more of them are primarily self-taught [1,2], and therefore
lack exposure to basic software development practices such as
writing maintainable code, using version control and issue
trackers, code reviews, unit testing, and task automation.

We believe that software is just another kind of experimental
apparatus [3] and should be built, checked, and used as carefully
as any physical apparatus. However, while most scientists are
careful to validate their laboratory and field equipment, most do
not know how reliable their software is [4,5]. This can lead to
serious errors impacting the central conclusions of published
research [6]: recent high-profile retractions, technical comments,
and corrections because of errors in computational methods
include papers in Science [7,8], PNAS [9], the Journal of Molecular
Biology [10], Ecology Letters [11,12], the Journal of Mammalogy [13],
Journal of the American College of Cardiology [14], Hypertension [15], and
The American Economic Review [16].

In addition, because software is often used for more than a single
project, and is often reused by other scientists, computing errors can
have disproportionate impacts on the scientific process. This type of
cascading impact caused several prominent retractions when an

error from another group’s code was not discovered until after
publication [6]. As with bench experiments, not everything must be
done to the most exacting standards; however, scientists need to be
aware of best practices both to improve their own approaches and
for reviewing computational work by others.

This paper describes a set of practices that are easy to adopt and
have proven effective in many research settings. Our recommenda-
tions are based on several decades of collective experience both
building scientific software and teaching computing to scientists
[17,18], reports from many other groups [19–25], guidelines for
commercial and open source software development [26,27], and on
empirical studies of scientific computing [28–31] and software
development in general (summarized in [32]). None of these practices
will guarantee efficient, error-free software development, but used in
concert they will reduce the number of errors in scientific software,
make it easier to reuse, and save the authors of the software time and
effort that can used for focusing on the underlying scientific questions.

Our practices are summarized in Box 1; labels in the main text
such as ‘‘(1a)’’ refer to items in that summary. For reasons of space,
we do not discuss the equally important (but independent) issues of
reproducible research, publication and citation of code and data,
and open science. We do believe, however, that all of these will be
much easier to implement if scientists have the skills we describe.

The Community Page is a forum for organizations and societies to highlight their
efforts to enhance the dissemination and value of scientific knowledge.
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T E C H N O L O G I E S

mechanical and civil engineering, and
other disciplines.

Only four of the students used a ver-
sion-control system when the course
started, and only two of those were
from computer science. Only one (a
physicist working on a multinational
collaboration) tested his software as a
matter of routine; none used any kind
of code-checking tools.

I wish this were unusual, but it’s not.
Since 1997, I’ve taught software engi-
neering to scientists and engineers
across the US and Canada. Most of my
students have been intelligent, hard-
working people with advanced degrees,
but only a handful have had any formal
training in programming beyond a gen-
eral freshman course in Java or C and a
later course in numerical methods or
bioinformatics tools. As a result, for
every high-energy physicist whose test
suite runs automatically every time she
checks changes into her Subversion
repository, dozens of other scientists are
debugging with print statements and
backing up their work in directories
called something like working.sep9.old.

Yet, it doesn’t have to be like this.
Over the past nine years, my colleagues
and I have developed a one-semester
course that teaches scientists and engi-
neers the “common core” of modern

software development. Our experience
shows that an investment of 150
hours—25 of lectures and the rest of
practical work—can improve produc-
tivity by roughly 20 percent. That’s
one day a week, one less semester in a
master’s degree, or one less year for a
typical PhD.

The course is called software carpen-
try, rather than software engineering,
to emphasize the fact that it focuses on
small-scale and immediately practical
issues. All of the material is freely avail-
able under an open-source license at
www.swc.scipy.org and can be used
both for self-study and in the class-
room. This article describes what the
course contains, and why.

Quality Is Free
The software carpentry course aims to
teach computational scientists how to
meet the standards that experimental
scientists have taken for granted for al-
most 200 years. If experimentalists
don’t calibrate their equipment, check
their reagants’ purity, and take careful
notes, what they’re doing isn’t consid-
ered science. In contrast, computa-
tionalists don’t even learn how to assess
their software’s quality in any system-
atic way, and very few would be able to
recreate and rerun the programs they

used to produce last year’s papers. As a
result, most computational science is
irreproducible and of unknown quality.

The reason most computational sci-
entists don’t care about quality is that
there’s no incentive for them to do so:
journal or conference reviewers rarely
ask how they tested the code used to
produce the results in a paper, and no
one gets points toward tenure for shak-
ing the last few bugs out of a simulation.

The course therefore doesn’t try to
“sell” quality directly. Instead, it starts
from the fact that the only way to im-
prove productivity is to improve qual-
ity. As in manufacturing and medicine,
investments in quality repay themselves
several times over because mistakes are
more expensive to fix than to prevent.

This realization is at the heart of all
modern software development meth-
odologies. At one end of the spectrum,
design-heavy approaches such as the
Rational Unified Process (RUP) try to
prevent bugs entirely. At the other, ag-
ile methodologies such as extreme
programming (XP) tighten feedback
loops to squash bugs before they can
do any harm.

Fewer differences exist in practice
between these approaches than in
theory (or in textbooks). Most profes-
sional software development teams use
the same basic tools in the same way,
regardless of what ideology they offi-
cially espouse. Those tools and prac-
tices are the core of our course.

Version Control
Version control is the one thing that
every project must have; not using it is

SOFTWARE CARPENTRY
Getting Scientists to Write Better Code by Making Them More Productive

By Greg Wilson

I N 2005, I TAUGHT A COURSE ON BASIC SOFTWARE DEVELOP-

MENT SKILLS TO 37 GRADUATE STUDENTS AT THE UNIVER-

SITY OF TORONTO. FOURTEEN WERE STUDYING COMPUTER

SCIENCE; THE REST WERE IN PHYSICS, THE LIFE SCIENCES,

Computing In Science & Engineering, 8(6):66–69, 2006.



Version control with git

http://asu-compmethodsphysics-phy494.github.io/ASU-
PHY494/2018/01/30/04_Git_basics/

http://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2018/01/30/04_Git_basics/
http://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2018/01/30/04_Git_basics/
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Version control with git

http://asu-compmethodsphysics-phy494.github.io/ASU-
PHY494/2018/01/30/04_Git_basics/

time

commit

branch
commit

merge

merge

git-scm.com

http://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2018/01/30/04_Git_basics/
http://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2018/01/30/04_Git_basics/


Create repository

cd mean_calculator
git init 



Stages of git

modified staged (“added”) committed

git-scm.com

https://git-scm.com


git workflow 

1. modify files in working directory

2. selectively stage changes that you want to include in 

your next commit (adds only those files to the staging 
area)


3. commit your changes (takes files from the staging area 
and stores them permanently in your Git repository)



Check status

git status

Use this command gratuitously!



Add files

git add README.md *.py 



Commit files

git commit

When your editor pops up, enter a commit message: Convention:

• first line (<60 char): one line summary

• second line: blank

• third and following lines: more details The first line is mandatory 

(you cannot have a commit without a message), the rest is 
optional. The commit message should succinctly summarize the 
changes in the commit.



Check status

git status

Use this command gratuitously!



git workflow 
1. modify files in working directory

2. selectively stage changes that you want to include in 

your next commit (adds only those files to the staging 
area)


Adding files/changes: git add

Removing files: git rm
Renaming files: git mv


3. commit your changes (takes files from the staging area 
and stores them permanently in your Git repository)


git commit -m “message”



History

git log

git-scm.com

https://git-scm.com


Branching

git branch branch-name
git checkout branch-name 

• Main branch: master

• Other branches: use meaningful names

• Short-cut: git checkout -b branch-name

master
branch-name

git-scm.com
git branch

https://git-scm.com


Merging

git checkout master
git merge branch-name  

• git tries automatic merging (and often succeeds)

• But… sometimes cannot reliably merge: manually fix conflicts 

(edit files: look for conflict markers <<<<, ====, >>>>) 
• Read the output from git merge very carefully! 

master

branch-name

git-scm.com

https://git-scm.com


Remote repositories
git clone remote-repo-url
cd repo 

git pull

git push

Create a local repository that is 
linked to the remote “origin”

Update local repository with 
remote content (“read”); merge 
if necessary.

Update remote repository with 
local content (“write”); must 
pull first if some remote 
content is not present in local.



GitHub https://github.com/
• Cloud-based repositories 


• Free for open source (and education)


• Create account and create new repo mean_calculator

• Add LICENSE (later) and README


• Clone and add your files, then push

git clone https://github.com/YOUR_USER_NAME/mean_calculator



Testing

Courtesy of the Naval Surface Warfare Center, Dahlgren, VA., 1988. - U.S. 
Naval Historical Center Online Library Photograph NH 96566-KN via https://
en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg

http://www.history.navy.mil/photos/images/h96000/h96566kc.htm
https://en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg
https://en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg


Testing

Courtesy of the Naval Surface Warfare Center, Dahlgren, VA., 1988. - U.S. 
Naval Historical Center Online Library Photograph NH 96566-KN via https://
en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg

Code without tests is legacy code.

http://www.history.navy.mil/photos/images/h96000/h96566kc.htm
https://en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg
https://en.wikipedia.org/wiki/Software_bug#/media/File:H96566k.jpg


Tests

https://katyhuff.github.io/python-testing/

• Assert that your code produces known results.


• Tests are functions that 

• run your code

• compare computed to known correct values

• raise exception or return error if they disagree 


• Write tests for 

• functions/methods/classes (unit tests)

• modules/libraries (integration tests)


• Regression tests (compare to past values)

https://katyhuff.github.io/python-testing/


pytest

import pytest

from mean import mean

def test_ints():
    num_list = [1,2,3,4,5]
    obs = mean(num_list)
    exp = 3
    assert obs == exp

def test_zero():
    num_list=[0,2,4,6]
    obs = mean(num_list)
    exp = 3
    assert obs == exp

def mean(num_list):
    return sum(num_list)/len(num_list)

mean.py test_mean.py

Run the tests

pytest



Continuous integration (CI)
• Does my software work on someone else’s computer?


• With different versions of libraries/Python/ …?

CI server


1. Checks out code from repository (triggered by push or pull request)


2. Spins up instances of operating systems (Linux, macOS, windows)


3. with required software versions (e.g., Python 2.7, 3.6)


4. Installs environment (libraries, …)


5. Builds and installs software


6. Runs test scripts.


7. Checks for errors


8. Reports results (include coverage)



CI Providers
Travis CI https://travis-ci.com/ (Linux, macOS)


Appveyor https://ci.appveyor.com/ (Windows)


Circle CI https://circleci.com/ (Linux, macOS*)


…

codecov https://codecov.io/ 


coveralls https://coveralls.io/

Coverage reporting

Providers with free plans (for open source)

https://travis-ci.com/
https://ci.appveyor.com/
https://circleci.com/
https://codecov.io/
https://coveralls.io/


Example: pytest + 
Based on Katy Huff’s https://katyhuff.github.io/python-testing/08-ci/ 


1. Create new repo on GitHub: mean_calculator


2. Clone locally


3. Add and commit example files from https://github.com/Becksteinlab/
workshop_testing


4. Create account on https://travis-ci.com and allow GitHub Apps Integration to 
access all your repositories


5. Push changes (including the .travis.yml file): should trigger build on Travis-CI


6. check https://travis-ci.com/ (when logged in, shows all your builds)


https://katyhuff.github.io/python-testing/08-ci/
https://github.com/orbeckst/mean_calculator
https://github.com/Becksteinlab/workshop_testing
https://github.com/Becksteinlab/workshop_testing
https://travis-ci.com
https://travis-ci.com/


Documentation

• Code without documentation is close to useless (to others 
and to your future self).


• No-one likes writing documentation.



Getting docs done
➡ Some/any documentation is better than none.

➡ Require docs in your projects.

➡ Keep code and docs together (easier to write and maintain)


➡ Use tools that make it easy to generate docs (HTML, PDF, …) 
➡ Document generators: sphinx, doxygen, …

➡ Human readable formats: restructured text (reST), 

markdown, …

➡ Automate doc creation: ReadTheDocs https://

readthedocs.org/, GitHub pages https://pages.github.com/ 
+ CI

https://readthedocs.org/
https://readthedocs.org/
https://pages.github.com/


https://www.mdanalysis.org/
mdanalysis/

https://www.mdanalysis.org/mdanalysis/
https://www.mdanalysis.org/mdanalysis/


https://gromacswrapper.readthedocs.io/en/develop/

https://gromacswrapper.readthedocs.io/en/develop/




Sharing code



 NATURE.COM
Discuss this article 
online at.
go.nature.com/ed3hsl

Publish your computer 
code: it is good enough
Freely provided working code — whatever its quality — improves programming 
and enables others to engage with your research, says Nick Barnes.

I am a professional software engineer and I want to share a trade 
secret with scientists: most professional computer software isn’t 
very good. The code inside your laptop, television, phone or car is 

often badly documented, inconsistent and poorly tested. 
Why does this matter to science? Because to turn raw data into 

published research papers often requires a little programming, which 
means that most scientists write software. And you scientists generally 
think the code you write is poor. It doesn’t contain good comments, 
have sensible variable names or proper indentation. It breaks if you 
introduce badly formatted data, and you need to edit the output by 
hand to get the columns to line up. It includes a routine written by a 
graduate student which you never completely understood, and so on. 
Sound familiar? Well, those things don’t matter. 

That the code is a little raw is one of the main reasons scientists give 
for not sharing it with others. Yet, software in all 
trades is written to be good enough for the job 
intended. So if your code is good enough to do 
the job, then it is good enough to release — and 
releasing it will help your research and your field. 
At the Climate Code Foundation, we encourage 
scientists to publish their software. Our expe-
rience shows why this is important and how 
researchers in all fields can benefit.

 Programs written by scientists may be small 
scripts to draw charts and calculate correla-
tions, trends and significance, larger routines 
to process and filter data in more complex ways, 
or telemetry software to control or acquire data 
from lab or field equipment. Often they are an 
awkward mix of these different parts, glued 
together with piecemeal scripts. What they 
have in common is that, after a paper’s publica-
tion, they often languish in an obscure folder or are simply deleted. 
Although the paper may include a brief mathematical description 
of the processing algorithm, it is rare for science software to be 
published or even reliably preserved.

Last year’s global fuss over the release of climate-science e-mails 
from the University of East Anglia (UEA) in Norwich, UK,  
highlighted the issue, and led the official inquiry to call for scientists 
to publish code. My efforts pre-date the UEA incident and grew from 
work in 2008 based on software used by NASA to report global tem-
peratures. Released on its website in 2007, the NASA code was messy 
and proved difficult for critics to run on their own computers. Most 
did not seem to try very hard, and nonsense was written about fraud 
and conspiracy. With other volunteers, I rewrote 
the software to make it easier for non-experts to 
understand and run. All software has bugs, and 
we found a number of minor problems, which 
had no bearing on the results. NASA fixed  

them and now intends to replace its original software with ours.
So, openness improved both the code used by the scientists and the 

ability of the public to engage with their work. This is to be expected. 
Other scientific methods improve through peer review. The open-
source movement has led to rapid improvements within the software 
industry. But science source code, not exposed to scrutiny, cannot 
benefit in this way.

NO EXCUSES
If scientists stand to gain, why do you not publish your code? I have 
already discussed misplaced concern about quality. Here are my 
responses to some other common excuses.

It is not common practice. As explained above, this must change in 
climate science and should do so across all fields. Some disciplines, 

such as bioinformatics, are already changing.
People will pick holes and demand support and 

bug fixes. Publishing code may see you accused of 
sloppiness. Not publishing can draw allegations 
of fraud. Which is worse? Nobody is entitled to 
demand technical support for freely provided 
code: if the feedback is unhelpful, ignore it.

The code is valuable intellectual property that 
belongs to my institution. Really, that little MAT-
LAB routine to calculate a two-part fit is worth 
money? Frankly, I doubt it. Some code may have 
long-term commercial potential, but almost all 
the value lies in your expertise. My industry has 
a name for code not backed by skilled experts: 
abandonware. Institutions should support pub-
lishing; those who refuse are blocking progress.

It is too much work to polish the code. For 
scientists, the word publication is totemic, and 

signifies perfectionism. But your papers need not include meticulous 
pages of Fortran; the original code can be published as supplementary 
information, available from an institutional or journal website.

I accept that the necessary and inevitable change I call for cannot be 
made by scientists alone. Governments, agencies and funding bodies 
have all called for transparency. To make it happen, they have to be 
prepared to make the necessary policy changes, and to pay for training, 
workshops and initiatives. But the most important change must come 
in the attitude of scientists. If you are still hesitant about releasing your 
code, then ask yourself this question: does it perform the algorithm 
you describe in your paper? If it does, your audience will accept it, and 
maybe feel happier with its own efforts to write programs. If not, well, 
you should fix that anyway.  SEE NEWS FEATURE P. 775

Nick Barnes is director of the Climate Code Foundation,  
Sheffield S17 4DL, UK. 
e-mail: nb@climatecode.org

NOBODY IS ENTITLED 
TO DEMAND 

TECHNICAL SUPPORT 
FOR FREELY 

PROVIDED CODE: 
IF THE FEEDBACK 

IS UNHELPFUL, 
IGNORE IT.
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WORLD VIEW A personal take on events

© 20  Macmillan Publishers Limited. All rights reserved10

14 October 2010 | Nature 467, 753 (2010) | doi:10.1038/467753a 

I am a professional software engineer and I want to share a trade secret with scientists: most 
professional computer software isn't very good. The code inside your laptop, television, phone or car 
is often badly documented, inconsistent and poorly tested. […] 

That the code is a little raw is one of the main reasons scientists give for not sharing it with others. 
Yet, software in all trades is written to be good enough for the job intended. So if your code is good 
enough to do the job, then it is good enough to release — and releasing it will help your research and 
your field. 

It is not common practice It should be…

People will pick holes and 
demand support and bug fixes. 

Open-ness is the proper scholarly approach. Nobody is 
entitled to demand technical support for freely provided 
code: if the feedback is unhelpful, ignore it.

The code is valuable intellectual 
property!

Rarely… almost all value is your expertise. Code not 
backed by experts = abandonware

Too much work to polish code! Does not have to be perfect – good enough is good!



Available = Citations

P. J. Bond and M. S. P. Sansom. Bilayer deformation 
by the Kv channel voltage sensor domain revealed by 
self-assembly simulations. Proc Natl Acad Sci 104(8):
2631–2636, 2007. 110 citations
P. J. Bond and M. S. P. Sansom. Insertion and 
assembly of membrane proteins via simulation. JACS 
128(8):2697–2704, Mar 2006. 331 citations

has been simulated for OmpA,21 OmpX,22 and GpA.23 In
principle, simulations may provide an approach to more complex
phenomena, such as membrane protein folding24 or vesicle
fusion.25 However, the time scales of these processes are
currently inaccessible to atomistic simulations. Thus, longer (∼1
µs) simulations are required to embrace a wider range of
membrane processes.
Coarse-grained (CG) models, in which small groups of atoms

are treated as single particles, provide an approach to increasing
the time scale and system dimensions of membrane simula-
tions.26 CG models have been developed for detergents and
lipids,27-30 proteins,31 and DNA.32 In one such model,30 each
CG particle represents, on average, four heavy (i.e., not H) atoms
(including water molecules). Different CG particle types interact
via Lennard-Jones and screened Coulombic potentials, while
soft harmonic terms maintain bond lengths and angles. CG
simulations have been applied to membranes, including simula-
tion of hydrophobic matching,33 phase transitions,34 and insertion
and solute transport of simple model channels.35 These studies
have utilized simplified representations of peptides and pores.
Given the importance of specific interactions of side chains with
lipids in determining membrane protein stability,36,37 CG models
which include different amino acid types are needed for accurate
simulation of membrane proteins.

Methods
Coarse-grained (CG) parameters for lipid molecules (dipalmitoyl-

phosphatidylcholine, DPPC), detergent molecules (dodecylphospho-
choline, DPC; Figure 1A), Na+ and Cl- ions, and water molecules were
as described in ref 30. CG parametrization of amino acids was based
on the methods derived for lipids by Marrink et al.30 Thus, an
approximate 4:1 mapping of heavy (i.e., not H) atoms to CG particles
was used. As described in ref 30, only four CG particle types are
distinguished, namely, “polar” (P), “mixed polar/apolar” (N), “hydro-
phobic apolar” (C), or “charged” (Q) groups, along with further subtypes
for the N and Q particles which allow fine-tuning of Lennard-Jones
interactions to reflect hydrogen bonding capacities.
The nonbonded interactions between these particles are described

by the standard Lennard-Jones (LJ) potential (see www.gromacs.org
for details of implementation). In all cases, the same effective LJ particle
size of 0.47 nm is used. Only five levels of LJ interaction are defined
by the Marrink force field, ranging from attractive (representing strong

polar interactions as in bulk water) through intermediate (representing
nonpolar interactions in aliphatic chains) to repulsive interactions
(representing hydrophobic repulsion between nonpolar and polar
phases).30 It should thus be noted that the subtypes reflecting hydrogen
bonding capacity for the N and Q particles mentioned above simply
modulate the LJ interactions with other particles. Charged (Q) groups,
intended for groups bearing approximately full charges, also interact
via the standard Coulombic potential with a relative dielectric constant
of 20. Shift functions are applied so that the energies and forces vanish
at the cutoff distance. The LJ interactions are smoothly shifted to zero
between 0.9 and 1.2 nm to reduce the cutoff noise. The Coulombic
interactions are also shifted to zero, from 0 nm to the same cutoff
distance of 1.2 nm.
The appropriate particle types were assigned based on the partial

charges and hydrogen bonding potentials of the constituent atoms of
each amino acid. Thus, a single backbone particle of type, mixed polar/
apolar (N), was assigned to every amino acid residue, plus between
zero and two side chain particles. The backbone particle subtype for a
particular peptide bond group depends on the presence of H-bonds
within the backbone of the starting atomistic structure; the appropriate
particle subtype was applied according to ref 30, selected from N0 (no
hydrogen bonding), Nd (hydrogen bonding donor), Na (hydrogen
bonding acceptor), or Nda (hydrogen bonding donor and acceptor). A
H-bond was defined using a 0.25 nm cutoff for the hydrogen acceptor
distance and 60° for the donor-hydrogen-acceptor angle.
The side chain particles were assigned as follows. Small hydrophobic

residues (Ala, Ile, Leu, Pro, Val) were assigned particle type apolar
(C), while the large hydrophobic Phe was assigned two apolar particles
(C+C). The sulfur-containing amino acids, Cys and Met, are hydro-
phobic and do not hydrogen bond with water, yet their sulfur-containing
group contains a fairly strong dipole. Therefore, their side chains were
assigned a particle of type mixed polar/apolar with no hydrogen bonding
capacity (N0). The side chains of Asn and Gln were also assigned mixed
polar/apolar particle types, but with hydrogen bonding donor and
acceptor character due to their amide groups (Nda). The side chains of
the small hydrophilic residues, Ser and Thr, were assigned particle type
polar (P) due to their hydroxyl groups. Although Tyr also contains a
hydroxyl group and hence hydrogen bonding donor capacity, it is
significantly hydrophobic in nature, with the same number of carbon
atoms as Phe; hence, it was assigned particle types C+Nd. As a result,
we observed in our test simulations that “interfacial” Tyr residues
interacted more favorably with the glycerol backbone region of the
bilayer than the headgroup region, which was consistent with the
equivalent atomistic simulations. The side chains of His and Trp contain

(20) Feller, S. E.; Gawrisch, K.; Woolf, T. B. J. Am. Chem. Soc. 2003, 125,
4434-4435.

(21) Bond, P. J.; Cuthbertson, J. M.; Deol, S. D.; Sansom, M. S. P. J. Am.
Chem. Soc. 2004, 126, 15948-15949.

(22) Bockmann, R. A.; Caflisch, A. Biophys. J. 2005, 88, 3191-3204.
(23) Braun, R.; Engelman, D. M.; Schulten, K. Biophys. J. 2004, 87, 754-763.
(24) Booth, P. J.; Curran, A. R. Curr. Opin. Struct. Biol. 1999, 9, 115-121.
(25) Brünger, A. T. Annu. ReV. Biophys. Biomol. Struct. 2001, 30, 157-171.
(26) Nielsen, S. O.; Lopez, C. F.; Srinivas, G.; Klein, M. L. J. Phys.: Condens.

Matter 2004, 16, R481-R512.
(27) Smit, B.; Hilbers, A. J.; Esselink, K.; Rupert, L. A. M.; Van Os, N. M.;

Schlijper, G. Nature 1990, 348, 624-625.
(28) Shelley, J. C.; Shelley, M. Y.; Reeder, R. C.; Bandyopadhyay, S.; Klein,

M. L. J. Phys. Chem. B 2001, 105, 4464-4470.
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1622-1633.
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Figure 1. Atomistic (left-hand) and coarse-grained (right-hand) models
compared for (A) a DPC molecule and (B) a GpA helix. Colors for atoms:
cyan ) carbon; red ) oxygen; blue ) nitrogen; bronze ) phosphorus;
yellow ) sulfur. Colors for CG particles: cyan ) apolar; red ) polar;
blue ) positively charged; bronze ) negatively charged; yellow ) neutral.
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Abstract: Interactions of lipids are central to the folding and stability of membrane proteins. Coarse-grained
molecular dynamics simulations have been used to reveal the mechanisms of self-assembly of protein/
membrane and protein/detergent complexes for representatives of two classes of membrane protein, namely,
glycophorin (a simple R-helical bundle) and OmpA (a !-barrel). The accuracy of the coarse-grained
simulations is established via comparison with the equivalent atomistic simulations of self-assembly of
protein/detergent micelles. The simulation of OmpA/bilayer self-assembly reveals how a folded outer
membrane protein can be inserted in a bilayer. The glycophorin/bilayer simulation supports the two-state
model of membrane folding, in which transmembrane helix insertion precedes dimer self-assembly within
a bilayer. The simulations also suggest that a dynamic equilibrium exists between the glycophorin helix
monomer and dimer within a bilayer. The simulated glycophorin helix dimer is remarkably close in structure
to that revealed by NMR. Thus, coarse-grained methods may help to define mechanisms of membrane
protein (re)folding and will prove suitable for simulation of larger scale dynamic rearrangements of biological
membranes.

Introduction

Understanding the mechanisms of folding and self-assembly
of membrane proteins is a key problem in contemporary
biophysical chemistry. From a biological perspective, membrane
proteins account for ∼25% of open reading frames in most
genomes,1 and yet only ∼100 high-resolution structures of
membrane proteins are known.2 An improved understanding of
the folding mechanisms of membrane proteins will enable
structure prediction. From a chemical perspective, an improved
understanding of the principles of membrane protein structure
will facilitate redesign and de novo design of membrane
proteins.3,4 Molecular dynamics offers a route to accurate
simulations of membrane protein self-assembly processes.
However, current studies are somewhat limited by a practical
upper limit of ∼100 ns on the time scale of simulations of
complex membrane protein-containing systems.
Biophysical and structural studies indicate that interactions

of membrane proteins with lipid or detergent molecules are
critical to their folding and stability.5,6 The two classes of
membrane protein are thought to insert into membranes in
different fashions. Thus, in the two-stage folding model for
R-helical membrane proteins,7 transmembrane (TM) helices
insert independently into the membrane, before self-assembling
into a functional helix bundle. In contrast, for !-barrel membrane

proteins, it is different, with !-barrel formation being ap-
proximately synchronous with insertion.8
Glycophorin A (GpA) and OmpA provide representatives of

these two classes of membrane protein and provide useful
models for studying insertion. GpA contains a single ∼25
residue R-helix which dimerizes to form the TM domain, the
structure of which has been determined in detergent micelles9
and lipid bilayers.10 The GpA helix contains a GxxxG motif,
which plays a key role in dimerization.11 OmpA is a bacterial
outer membrane protein containing a ∼170 residue N-terminal
domain that forms an eight-stranded !-barrel.12,13
Limited structural data are available on the interactions

between membrane proteins and lipid or detergent mol-
ecules.5,14-17 Atomistic molecular dynamics (MD) simulations
of membrane proteins18 complement these data, providing a
more dynamic view of protein/lipid and protein/detergent
interactions.19,20 The self-assembly of protein/detergent micelles
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Abstract: Many biologically interesting phenomena occur on a time scale that is too long to be
studied by atomistic simulations. These phenomena include the dynamics of large proteins and
self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer
simulations to be run on length and time scales that are 2–3 orders of magnitude larger compared
to atomistic simulations, providing a bridge between the atomistic and the mesoscopic scale.
We developed a new CG model for proteins as an extension of the MARTINI force field. Here,
we validate the model for its use in peptide-bilayer systems. In order to validate the model, we
calculated the potential of mean force for each amino acid as a function of its distance from the
center of a dioleoylphosphatidylcholine (DOPC) lipid bilayer. We then compared amino acid
association constants, the partitioning of a series of model pentapeptides, the partitioning and
orientation of WALP23 in DOPC lipid bilayers and a series of KALP peptides in dimyristoylphos-
phatidylcholine and dipalmitoylphosphatidylcholine (DPPC) bilayers. A comparison with results
obtained from atomistic models shows good agreement in all of the tests performed. We also
performed a systematic investigation of the partitioning of five series of polyalanine-leucine
peptides (with different lengths and compositions) in DPPC bilayers. As expected, the fraction
of peptides partitioned at the interface increased with decreasing peptide length and decreasing
leucine content, demonstrating that the CG model is capable of discriminating partitioning
behavior arising from subtle differences in the amino acid composition. Finally, we simulated
the concentration-dependent formation of transmembrane pores by magainin, an antimicrobial
peptide. In line with atomistic simulation studies, disordered toroidal pores are formed. In
conclusion, the model is computationally efficient and effectively reproduces peptide-lipid
interactions and the partitioning of amino acids and peptides in lipid bilayers.

1. Introduction
Molecular simulations are a useful tool in the interpretation
of experimental data, and they provide structural and dynamic

details that cannot be easily probed experimentally. Despite
the progress in computer hardware and simulation algorithms,
atomistic simulations are still limited to systems containing
tens or hundreds of thousands of atoms and a submicrosecond
time scale. Cellular processes, however, cover time scales
of nanoseconds to seconds and involve hundreds of different
molecules interacting on a multitude of length scales. Many
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The choice of the bonded parameters was based on the
distribution of bond lengths, angles, and dihedrals calculated
from the Protein Data Bank (PDB). Similar models have been
developed recently by other groups as well. Starting from
Marrink’s original model for lipids,22 the groups of Schulten
and Sansom built a model for proteins and studied lipoprotein
particles33 and membrane proteins.34,35 The major differences
with the approach presented in this paper is that (i) we base
our CG protein model on the new MARTINI CG force field,
which has many more particle types and allows for discrimi-
nation between all amino acids, and (ii) we base the particle
assignment on a systematic investigation of thermodynamic
properties of each amino acid. Using a preliminary version
of the current model, Periole et al.36 recently managed to
study the oligomerization of rhodopsins, a transmembrane
protein belonging to the class of G-protein coupled receptors.
It was found that the presence of hydrophobic mismatch
favors rhodopsin aggregation, in quantitative agreement with
results from FRET experiments that were performed in
conjunction to the simulations. The simulations furthermore
revealed that protein–protein interactions inside a membrane
bilayer show a site preference related to localized mismatch,
pointing to the importance of modeling proteins as chemi-
cally detailed objects rather than as simplified rods. Yefimov
et al.37 succeeded in simulating the spontaneous tension-
driven gating of a membrane-embedded mechanosensitive
protein channel, also using a prerelease of the MARTINI
protein force field. This simulation comprises one of the first
examples of a membrane protein in action, resolved at near-
atomic detail. In another recent application,38 the gating
motions of membrane-embedded potassium channels were
studied. It was found that channel gating is coupled to subtle
displacements of the voltage sensor domain. A preliminary
version of the current force field has also been applied to
study the conformation of apoA-1 in model spheroidal high-
density lipoprotein particles.39 Extensive comparison of the
CG system to all-atom simulations revealed a close cor-
respondence, both in structure and in dynamics.

The present work is organized as follows. First, we
describe the force field parametrization procedure, for both
bonded and nonbonded interactions. Then, we present results
for a range of test cases of the model, focusing on simulations
of peptide-membrane systems. In particular, we show that
(i) the potential of mean force for single amino acid side
chains across a lipid membrane is very similar with the CG
model compared to results obtained with all-atom models,
(ii) the correct partitioning and orientation of a large variety
of small peptides at the water-bilayer interface is repro-
duced, and (iii) antimicrobial peptides (AMPs) form trans-
membrane pores that look similar to what has been shown
with all-atom simulations.

2. The Model

2.1. Basic Parametrization. The basic parameters for the
CG peptide model are the same as those published previously
for the CG lipid model.22,23 The peptide force field described
here is fully compatible with the latest lipid force field,
coined the MARTINI force field. The version described in

the current paper is denoted v2.1. In this section, we provide
a brief overview of the basic parametrization. More details
about the CG model can be found in the original papers.22,23

The Mapping. The MARTINI model23 is based on a four-
to-one mapping; that is, on average, four heavy atoms are
represented by a single interaction center, with an exception
for ringlike molecules. To map the geometric specificity of
small ringlike fragments or molecules (e.g., benzene, cho-
lesterol, and several of the amino acids), the general four-
to-one mapping rule is insufficient. Ringlike molecules are
therefore mapped with higher resolution (up to two-to-one).
The model considers four main types of interaction sites:
polar (P), nonpolar (N), apolar (C), and charged (Q). Within
a main type, subtypes are distinguished either by a letter
denoting the hydrogen-bonding capabilities (d ) donor, a
) acceptor, da ) both, 0 ) none) or by a number indicating
the degree of polarity (from 1 ) lower polarity to 5 ) higher
polarity). The mapping of all protein amino acids is shown
in Figure 1.

Nonbonded Interactions. All particle pairs i and j at
distance rij interact via a Lennard-Jones (LJ) potential:

VLennard-Jones(rij)) 4εij[(σij

rij
)12

- (σij

rij
)6] (1)

The strength of the interaction, determined by the value
of the well depth εij depends on the interacting particle types.
The value of ε ranges from εij ) 5.6 kJ/mol for interactions
between strongly polar groups to εij ) 2.0 kJ/mol for
interactions between polar and apolar groups mimicking the
hydrophobic effect. The effective size of the particles is
governed by the LJ parameter: σ ) 0.47 nm for all normal
particle types. For the special class of particles used for
ringlike molecules, slightly reduced parameters are defined
to model ring–ring interactions: σ ) 0.43 nm and εij is scaled
to 75% of the standard value. The full interaction matrix
can be found in the original publication.23 In addition to the
LJ interaction, charged groups (type Q) bearing a charge q
interact via a Coulombic energy function with a relative
dielectric constant εrel ) 15 for explicit screening:

Vel )
qiqj

4πε0εrelrij
(2)

To avoid generation of unwanted noise, the nonbonded

Figure 1. Coarse-grained representation of all amino acids.
Different colors represent different particle types.
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studied by atomistic simulations. These phenomena include the dynamics of large proteins and
self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer
simulations to be run on length and time scales that are 2–3 orders of magnitude larger compared
to atomistic simulations, providing a bridge between the atomistic and the mesoscopic scale.
We developed a new CG model for proteins as an extension of the MARTINI force field. Here,
we validate the model for its use in peptide-bilayer systems. In order to validate the model, we
calculated the potential of mean force for each amino acid as a function of its distance from the
center of a dioleoylphosphatidylcholine (DOPC) lipid bilayer. We then compared amino acid
association constants, the partitioning of a series of model pentapeptides, the partitioning and
orientation of WALP23 in DOPC lipid bilayers and a series of KALP peptides in dimyristoylphos-
phatidylcholine and dipalmitoylphosphatidylcholine (DPPC) bilayers. A comparison with results
obtained from atomistic models shows good agreement in all of the tests performed. We also
performed a systematic investigation of the partitioning of five series of polyalanine-leucine
peptides (with different lengths and compositions) in DPPC bilayers. As expected, the fraction
of peptides partitioned at the interface increased with decreasing peptide length and decreasing
leucine content, demonstrating that the CG model is capable of discriminating partitioning
behavior arising from subtle differences in the amino acid composition. Finally, we simulated
the concentration-dependent formation of transmembrane pores by magainin, an antimicrobial
peptide. In line with atomistic simulation studies, disordered toroidal pores are formed. In
conclusion, the model is computationally efficient and effectively reproduces peptide-lipid
interactions and the partitioning of amino acids and peptides in lipid bilayers.

1. Introduction
Molecular simulations are a useful tool in the interpretation
of experimental data, and they provide structural and dynamic

details that cannot be easily probed experimentally. Despite
the progress in computer hardware and simulation algorithms,
atomistic simulations are still limited to systems containing
tens or hundreds of thousands of atoms and a submicrosecond
time scale. Cellular processes, however, cover time scales
of nanoseconds to seconds and involve hundreds of different
molecules interacting on a multitude of length scales. Many
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Public repositories

• GitHub https://github.com/


• BitBucket https://bitbucket.org/


• SourceForge https://sourceforge.net/ 
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Free and Open Source 
Software (FOSS)

• Great impact (e.g., Linux, Apache, git, 
Python, …)


• Alternative to intellectual-property 
instruments


• OS licenses: allow people to 
coordinate their work freely, within the 
confines of copyright law, while making 
access and wide distribution a priority https://opensource.org/



Open source

Making the source public to read is not enough. 

We must attach a license that allows others to 
modify and distribute the code.



• Software is creative work: copyright is automatically attached to it


• The creator (or typically their institution) owns the copyright.


• Public code is unusable without a license: attach a license to 
any code you want to make public.
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Computing is ubiquitous in every
domain of scientific research. Software is
the means by which scientists harness the
power of computers, and much scientific
computing relies on software conceived
and developed by other practicing re-
searchers. The task of creating scientific
software, however, does not end with the
publication of computed results. Making
the developed software available for in-
spection and use by other scientists is
essential to reproducibility, peer-review,
and the ability to build upon others’ work
[1,2]. In fulfilling expectations to distribute
and disseminate their software, scientist-
programmers are required to be not only
proficient scientists and coders, but also
knowledgeable in legal strategies for li-
censing their software. Navigating the
often complex legal landscape of software
licensing can be overwhelming, even for
sophisticated programmers. Institutional
technology transfer offices (TTOs) exist
to help address this need, but due to
mismatches in expectations or specific
domain knowledge, interactions between
scientists and TTO staff can result in
suboptimal outcomes.

As practitioners in the scientific com-
puting and technology law fields, we
have witnessed firsthand the confusion
and difficulties associated with licensing
scientifically generated software. SBGri-
d.org is a consortium of scientific
software developers and users in hun-
dreds of biomedical research laborato-
ries worldwide. As facilitator and mid-
dleman between developers and end-
users, we commonly assist in the dissem-
ination and use of scientifically generat-
ed software. Through research and
advocacy, the Samuelson Law, Technol-
ogy and Public Policy Clinic works with
software developers and other creators
on licensing issues, particularly issues
related to facilitating ‘‘open access’’ to
scientific, technical, or creative materi-
als. Together, we offer a primer on
software licensing with a focus on the
particular needs of the scientist software
developer. The aim of this guide is to
help scientists better engage with their

institutional TTO when choosing soft-
ware licenses.

Why Software Licenses Are
Important

Licenses are important tools for setting
specific terms on which software may be
used, modified, or distributed. Based on
the copyright protection automatically
granted to all original works, a software
license—essentially, a set of formal per-
missions from the copyright holder—may
include specific ‘‘conditions’’ of use, and
are an important part of the legally
binding contract between program author
(or rights owner) and end-user.

Without a license agreement, software
may be left in a state of legal uncertainty in
which potential users may not know which
limitations owners may want to enforce,
and owners may leave themselves vulner-
able to legal claims or have difficulty
controlling how their work is used. This is
equally true for software that is commer-
cialized and offered for a fee, and software
that is made available without cost to
others. While end-users often balk at overly
restrictive software licenses, the uncertainty
caused when no license is given can also
discourage those wishing to make use of a
piece of code. It is important to note that
licenses can be used to facilitate access to
software as well as restrict it.

Software Licensing in Academic
and Research Environments

For a license to be valid it must be
granted by the owner of the work’s

intellectual property (IP) rights. Under
the policies of most academic and
research institutions, researchers who
have created a piece of software are
unlikely to own full rights to their works.
Instead, the institution generally holds or
shares legal right to developed software.
Institutions’ policies on IP ownership
vary, but in most cases your institution
will be the legal ‘‘rights owner,’’ and will
be the entity that actually grants the
license you choose for your software.
Although many types of licenses, espe-
cially of the ‘‘free and open source’’
variety, are simple enough for the non-
legal expert to understand and apply
(Figure 1), it is generally necessary to
consult your institutions’ TTO before
imposing a license. See below for more
information about working with your
institution in applying a license.

Types of Software Licenses

Colloquially speaking, the spectrum of
software licensing strategies can be divided
into three categories: ‘‘proprietary,’’ ‘‘free
and open source,’’ or a hybrid of the two.

Proprietary Licensing
This strategy is familiar from the ‘‘click-

thru’’ agreements that govern commercial
software packages. The primary purpose
of a proprietary software license is to limit
the use of software according to the rights
owner’s business strategy. As a result,
proprietary licenses are often very restric-
tive for end-users. They typically allow use
of the software only for its stated purpose,
often only on a single computer, forbid
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equally true for software that is commer-
cialized and offered for a fee, and software
that is made available without cost to
others. While end-users often balk at overly
restrictive software licenses, the uncertainty
caused when no license is given can also
discourage those wishing to make use of a
piece of code. It is important to note that
licenses can be used to facilitate access to
software as well as restrict it.

Software Licensing in Academic
and Research Environments

For a license to be valid it must be
granted by the owner of the work’s

intellectual property (IP) rights. Under
the policies of most academic and
research institutions, researchers who
have created a piece of software are
unlikely to own full rights to their works.
Instead, the institution generally holds or
shares legal right to developed software.
Institutions’ policies on IP ownership
vary, but in most cases your institution
will be the legal ‘‘rights owner,’’ and will
be the entity that actually grants the
license you choose for your software.
Although many types of licenses, espe-
cially of the ‘‘free and open source’’
variety, are simple enough for the non-
legal expert to understand and apply
(Figure 1), it is generally necessary to
consult your institutions’ TTO before
imposing a license. See below for more
information about working with your
institution in applying a license.

Types of Software Licenses

Colloquially speaking, the spectrum of
software licensing strategies can be divided
into three categories: ‘‘proprietary,’’ ‘‘free
and open source,’’ or a hybrid of the two.

Proprietary Licensing
This strategy is familiar from the ‘‘click-

thru’’ agreements that govern commercial
software packages. The primary purpose
of a proprietary software license is to limit
the use of software according to the rights
owner’s business strategy. As a result,
proprietary licenses are often very restric-
tive for end-users. They typically allow use
of the software only for its stated purpose,
often only on a single computer, forbid

Citation: Morin A, Urban J, Sliz P (2012) A Quick Guide to Software Licensing for the Scientist-
Programmer. PLoS Comput Biol 8(7): e1002598. doi:10.1371/journal.pcbi.1002598

Editor: Fran Lewitter, Whitehead Institute, United States of America

Published July 26, 2012

Copyright: ! 2012 Morin et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: The work was supported by the National Science Foundation grant 0639193 (PS). The funders had
no role in the preparation of the manuscript.

Competing nterests: The authors have declared that no competing interests exist.

* E-mail: piotr_sliz@hms.harvard.edu

PLoS Computational Biology | www.ploscompbiol.org 1 July 2012 | Volume 8 | Issue 7 | e1002598

i



Permissive vs Copy-Left
All are “open”: allow free use, distribution, modification
https://opensource.org/licenses

- Fewest restrictions


- Only require that authors 
be given credit


- examples: BSD, MIT 
License, Apache License

- Guarantees perpetual 
access to source code


- Requires derivative works 
to be under same license


- Considered restrictive (and 
industry dislikes it) 


- examples: GNU GPL, LGPL

https://opensource.org/licenses


https://choosealicense.com/licenses/mit/

https://choosealicense.com/licenses/mit/


https://choosealicense.com/licenses/gpl-3.0/

https://choosealicense.com/licenses/gpl-3.0/


License compatibility

Combining code (libraries, functions) is important to create 
new software in a modular fashion.


Licenses must be compatible! 

Not all licenses are compatible!



with other FOSS licenses, thereby diluting
the ability to easily combine code.

This unfortunate situation has been
exacerbated by the proliferation of incom-
patible FOSS licenses, many of which
differ in only trivial ways. The Open
Source Initiative (OSI) [15] was created in
part to reduce the fragmentation of the
FOSS license space cause by incompatible
and redundant licenses. OSI thus strongly
encourages using an existing FOSS license
instead of creating a new, ‘‘bespoke’’
license, and offers a categorization of
licenses to help developers avoid redun-
dancy [16].

In general, the more restrictive the
license, the less compatible it is with other
licenses. Proprietary licensed software, by
design, cannot be incorporated into other
codebases absent a separately negotiated
licensing agreement.

License compatibility is further compli-
cated, however, in that it is directional.
License directionality refers to how a license
behaves differently with code feeding into it
(upstream, or backward-compatible) or out

of it (downstream, or forward-compatible)
(Figure 2). For example, a permissive
license like the BSD is forward-compatible
with nearly any other kind of license, but
backward-compatible only with other per-
missive licenses. Likewise, a copyleft license
like the GPL can incorporate (upstream)
both permissive and other GPL’d code, but
the resulting software may only be licensed
(downstream) under the GPL.

Directionality is an important reason
why, if you’re trying to integrate code
written by others with your own, you’ll
want to be aware of what license the code
you are incorporating carries. When
attempting to combine code from multiple
projects each under different license types,
issues of compatibility can become very
complex.

‘‘Form’’ versus ‘‘Bespoke’’ Licenses
FOSS license are generally form licenses,

meaning that their terms are standardized
and a developer need only apply them
(Figure 1). This standardization is critical
to the success of FOSS strategies because it

maximizes license compatibility and min-
imizes the cost of administering and
understanding the terms of a given license.
Conversely, bespoke licenses are custom-
tailored for each individual project. Tai-
lored licenses allow for greater control, but
require more resources to develop and
administer and are highly likely to be
incompatible with other licensing schemes.
Nearly all proprietary licenses are bespoke.

Hybrid and Multi-Licensed Software
These license schemes differ from single

licensing in allowing rights owners to
choose which licenses best serve their
needs on a case-by-case basis. One form
of multi-licensing permits users and con-
tributors to select among multiple licenses
offered by the rights owner. Another
example is when owners enter into
separate ‘‘side’’ agreements not to enforce
certain provisions of FOSS licenses, often
for a fee. Limiting the reach of FOSS
licenses in this manner is controversial
within the open source community due to
the partial circumvention of share-alike
principles.

MySQL [17] and Oracle Berkeley DB
[18] (BDB) are two well-known examples
of multi-licensed software and are both
made freely available for use, distribution,
and modification under open source
licenses. However, each of these programs
is additionally offered for a fee under
alternative licenses more amenable to
proprietary business strategies.

FOSS Licenses and
Commercialization

It is a common misconception that
FOSS licensing strategies preclude com-
mercialization. In fact, OSI-approved [3]
FOSS licenses cannot discriminate against
commercial use. (This is one reason why
institutional TTOs have sometimes pre-
ferred a bespoke ‘‘non-profit-use-only’’
license.) Though FOSS licenses preclude
charging for the license rights themselves,
developers are free to charge a fee for
additional services such as technical sup-
port, priority feature development, consul-
tation, etc. Hybrid licensing schemes (see
above) offer further avenues for FOSS
commercialization.

Choosing a Software License

Determining which license will work best
for you can require some thought, and
depends not only on specific attributes of
your software, but also on your particular
goals. While both FOSS and proprietary
licenses generally require attribution and

Figure 2. Schematic representation of license directionality. In general, permissively
licensed code is forward compatible with any other license type. However, only permissive
licenses, such as the BSD and MIT, can feed into other permissive licenses. Restrictive licenses like
the GPL are backward compatible with themselves and permissive licenses, but must adopt the
restrictive license from then on. Proprietary licenses can incorporate upstream permissively
licensed code, but by definition are incompatible with any other downstream license. Grey
represents actions that are not permitted without negotiating a separate license agreement with
the rights owner.
doi:10.1371/journal.pcbi.1002598.g002
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Choosing a license

Default: simple and permissive (MIT)


Ensure openness: copy-left (GPL)

https://choosealicense.com/

https://choosealicense.com/


Grant proposals

• NIH and NSF have data sharing guide lines and documents.


• Write: “The research software that will be produced in this 
project will be released as open source under an OSI-
approved license (xxx license).”



Thank you!

• Links to material: https://becksteinlab.physics.asu.edu/
learning/117/summer-2018-mini-workshops


• Videos: YouTube: Becksteinlab Mini-Workshop 2018

https://becksteinlab.physics.asu.edu/learning/117/summer-2018-mini-workshops
https://becksteinlab.physics.asu.edu/learning/117/summer-2018-mini-workshops
https://becksteinlab.physics.asu.edu/learning/117/summer-2018-mini-workshops
https://www.youtube.com/watch?v=aQOsX9AsCZA&list=PLmLa309lxtfrTbqyU4_TMws5e9g35mj8d

