
Simulating liquid Argon with your own Python MD program

Midterm Project ASU PHY494/PHY598/CHM598 (2013)

February 21, 2013 – March 13, 2013

Abstract Your project is to write, in teams, a Python molecular dynamics (MD) code to
simulate liquid Argon. We want to study how varying some of the simulation parameters
affects the accuracy of the simulations. Part of your task is to figure out how to assess
your simulations for accuracy. You will write a short “letter”-style paper to communicate,
discuss and summarize your reasoning and your results.

Due Wed, March 13, 2013, 11:59pm. E-mail to oliver.beckstein@asu.edu with subject
PHY598: midterm. Each student should

• submit their own report in PDF format;

• submit all code that is required to reproduce the results in the report. Include a
text file README.txt that describes the commands to run simulation 3 in Table 1.
The code must run on any of the iMacs using the instructions provided. The code
package may be identical for each team member.

Marking will take the following into consideration:

• code runs and produces correct output

• report clearly and succinctly describes the question, method and results and
contains sufficient evidence that the requirements (see below) have been met

• thorough attribution of code; proper use of citations in the report

• evidence of teamwork

• any additional work that you want to include in an appendix to the report or
additional simulations for the main report will be treated as bonus material

1

1 Background and materials

For background reading the class notes, cited articles, and the book by Frenkel and Smit
(1) (and also Allen and Tildesley (2) and Leach (3)) are recommended. A good general
article on molecular dynamics simulations is Adcock and McCammon (4) and simulations
of liquid argon have been discussed in an earlier homework assignment (5). Any code that
has been developed or provided throughout the class can be used, either in full or in parts,
as long as proper attribution is given (see below).

2 Requirements

The following are requirements of the project and need to be demonstrated in the final
report (e.g. by including appropriate graphs or mentioning in the Methods section).

2.1 MD program

Write a program to simulate the Lennard-Jones fluid (which we use as a model for liquid
Argon) in Python. Atoms are treated as point masses with positions xi (in 3D space, i.e.
xi = (xi, yi, zi)) that interact through the pair-wise Lennard-Jones potential

vLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, rij :=

√
(xj − xi)2. (1)

The simulations are to be performed at constant volume V , particle number N , and total
energy E, for a given density ρ and initial temperature T0. As units in the code use nm
for lengths, ps for time, nm/ps for velocities, u for mass, K for temperature, and kJ/mol
for energies. Your program needs to be able to do at least the following:

System setup and initialisation This stage only needs to be completed once before run-
ning the actual simulation.

1. initialise the simulation to a system of the prescribed N and ρ (e.g. by generating
a cubic lattice of the particles or placing them randomly1) Generate a cubic
simulation cell with length L. Have the code print the box dimensions.

2. assign initial velocities, corresponding to the prescribed temperature T0, in such
a way that the total linear momentum is 0. Have the code print T0 and initial
temperature T (t = 0), calculated from the initial velocities.

Molecular dynamics simulation This is the “core” of the code, which performs the force
evaluation and integration of motion in time steps of size ∆t.

1. use periodic boundary conditions in a cubic simulation cell with length L

1If placing randomly you must ensure that “clashes” are avoided, i.e. no overlaps between the LJ hard
cores.

2

2. calculate forces between particles, using the minimum-image convention; inter-
actions are truncated at a cut-off2 Rcut = 3σ where σ is the Lennard-Jones hard
core parameter in Eq. 1.3

3. integrate the equations of motion using the Verlet integrator

4. calculate and store for each time step

• the potential energy U(t) of the system

• the kinetic energy Tkin(t) and system temperature T (t)

• the total energy E(t)

• the total linear momentum P(t) =
∑N

i=1mivi(t)

5. write out the coordinates every 0.1 ps to a trajectory in XYZ format4

6. At the end of the run, your code should report timing/performance statistics:
total run time (“wall time”), wall time per time step, performance in steps per
h and simulated ps/h, performance in steps per day and simulated ns/d.5

Your code should be able to run in Python 2.7 and should make use of NumPy. You can
use any other standard Python modules if you want to 6. Your code must run and produce
output when run on any machine in the iMac lab.7

2.2 Analysis

After the simulation has finished you should

1. plot the time series E(t), E(t)/N , U(t)/N , Tkin(t)/N (average energies per particle),
T (t), total linear momentum |P(t)|

2. plot histograms of T and U/N

3. report the time-averaged values 〈T 〉, 〈U/N〉, 〈E/N〉 and standard deviations over a
trajectory8

2If the simulation cell is too small, i.e. L/2 < 3σ then set Rcut = L/2.
3You may implement shifted potentials and long range corrections to the energy (1) but this is not a

requirement.
4When running longer simulations then we do not necessarily want to keep every time step because little

changes between steps and the trajectories quickly become very big and fill up the disk.
5The Python time.time() function from the time module could be helpful.
6“standard Python modules” refers to the packages installed on the iMacs in the iMac lab, which means

the Enthought Python Distribution 2.7.2 and the Python Standard Library 2.7.
7There is no C or FORTRAN compiler available on the iMacs so you will have to work with

Python/NumPy alone.
8The time-average of a quantity A is defined as

〈A〉 =
1

τ

∫ τ

0

A(t) dt =
1

Nsteps

Nsteps∑
i=0

Ai (2)

3

4. calculate the energy drift (6)

∆E =
1

Nsteps

Nsteps∑
i=1

∣∣∣∣E(0)− E(i∆t)

E(0)

∣∣∣∣ =

〈∣∣∣∣1− E(t)

E(0)

∣∣∣∣〉 (3)

(E(i∆t) is simply E(t))

5. visualize the trajectory in VMD (7) and prepare an image of the first and last frame
of the trajectory

6. plot the radial distribution function g(r) (You can write your own code or use VMD9.)

2.3 Input parameters

In order to simulate liquid argon we are using the Lennard-Jones parameters introduced
by Rahman (5). Simulate liquid Ar (m = 39.948 u) at a density ρ = 1.374 g · cm−3 and an
initial temperature of T0 = 94.4 K; for further parameters see Table 1. For the Lennard-
Jones potential Eq. 1 choose10 ε = 120 K · kB = 0.99774 kJ ·mol−1 and σ = 0.34 nm.

2.4 Simulations

Perform the simulations with the parameters listed in Table 1. Simulations 7*—9* are
optional and you can do them to explore how system size affects the energies. You can of
course do further simulations if you think they are necessary or if you want to add more
data points to a graph.

3 Report

Prepare a “letter-style” paper in which you report what you accomplished. The report
should contain a brief introduction, including a description of the problem, and overview
over the methods used and implemented, the results obtained, and what the results mean
(e.g. comment on the question of some of the simulation parameters affect the accuracy of
the simulations).

• maximum 4 pages, use 12 pt font Cambria/Times New Roman/Helvetica/Arial, sin-
gle spaced, minimum 1 inch margins; including figures and tables and excluding
references, acknowledgements or appendices

where the second equality assumes that A is computed for each time step i over a trajectory of total

length τ = Nsteps∆t. The standard deviation is as usual σA =
√〈

(A− 〈A〉)2
〉
.

9See menu Extensions→Analysis→Radial Pair Distribution function g(r) but note that VMD does not
read the simulation box from the XYZ file and hence cannot take periodic boundary conditions into
account. You can provide this information with the sub-menu Utilities: Set unit cell dimensions

10We are choosing as energy unit kJ/mol and hence kB = 1.3806488×10−23J·K−1 = 8.3144621 J·mol−1·K−1

4

simulation N τ (ps) ∆t (ps)

0 64 100 0.01
1 864 10 0.001
2 864 10 0.005
3 864 100 0.01
4 864 100 0.05
5 864 10 0.01
6 864 1 0.01
7* 512 100 0.01
8* 125 100 0.01
9* 864 100 0.001

Table 1. Simulations to be performed for the project. τ is the total simulation time, ∆t is the
time step, N the total number of atoms. *Simulations marked with an asterisk are optional.

• title, all authors on the team (“star” (“*”) the person who wrote this report), abstract

• include the following sections: Introduction, Methods, Results and Discussion, Con-
clusions, Acknowledgements, References (see this handout for how to format refer-
ences)

• appendix for any bonus work (but your report must be readable without it)

• any figures must be properly labeled (axes, units, individual lines distinguishable)

• In the Acknowledgements section mention any help you got from outside your team.
Also mention briefly who in the team contributed to which part of the project. The
Acknowledgements section should be identical for all three team reports. For instance,

“All authors designed the project together. M.N. wrote code (mdInit.py)
to set up the system and contributed the force calculation and performed
simulations. X.Y. wrote the MD code (mdLJ.py) and performed simu-
lations. Q.Z. wrote the analysis code (LJanalysis.py), analyzed data to-
gether with M.N. and X.Y., and contributed the overlap detection routine
in mdInit.py. All authors discussed the results.”

(Many journals require attributions of this kind. You don’t have to follow the example
exactly but you need to spell out everyone’s major contributions to the success of the
project.)

You might find it difficult to keep within the page limit. Try to be concise, combine
multiple graphs into one, e.g. all per-particle energies (but make sure that each line is

5

properly labeled). Graphs can be small but must still be readable.11 You don’t have to
include all graphs for all simulations in the paper but there must be sufficient data shown
to support your conclusions. For instance, you could show the energy time series for a
typical and a extreme case and summarize the results by plotting the averages, standard
deviations, and drifts from all simulations.

4 Code re-use and collaboration

You will carry out the project in teams except for the report, which must be written by
each team member individually. In the authors list, add a star “*” to the person who wrote
the report.

• You can use any code that was developed or provided during class.

• You are allowed to discuss the problem with other teams, and you are allowed to
share individual pieces of code, provided that each piece of code is attributed to the
original author (use full names). However, if more than 50% of code appear to be
from other sources than the team, marks will be deducted. (Code from class until
the project start date is exempt from the 50% rule.)

• In particular, you can use anything that has been discussed publicly in the Midterm
Wiki on BlackBoard (go to Tools → Wikis: Midterm Project 2013) although attri-
bution is still required.

• Copying text (report and code) verbatim from other sources without attribution
constitutes plagiarism. The report should be in your own words but it is perfectly
acceptable to cite other works instead of explaining in detail how, for instance, peri-
odic boundary conditions are implemented.

• You can use the Acknowledgements section to highlight major external contributions
(in addition to comments in the code).

References

1. Frenkel, D. and B. Smit, 2002. Understanding Molecular Simulations. Academic Press, San
Diego, 2nd edn.

2. Allen, M. P. and D. J. Tildesley, 1987. Computer Simulations of Liquids. Oxford University
Press, Oxford.

3. Leach, A. R., 1996. Molecular Modelling. Principles and Applications. Longman.

11Hint: Generate graphs in matplotlib at final size by using plt.figure(figsize=(5, 5)); font sizes can
be changed with import matplotlib; matplotlib.rc(’font’, size=8); consider plotting graphs with
linewidth=3 to make them better visible.

6

4. Adcock, S. A. and J. A. McCammon, 2006. Molecular dynamics: survey of methods for simu-
lating the activity of proteins. Chem Rev 106:1589–615.

5. Rahman, A., 1964. Correlations in the motion of atoms in liquid argon. Phys. Rev. 136:405–411.

6. Martyna, G. J., M. E. Tuckerman, D. J. Tobias, and M. L. Klein, 1996. Explicit reversible
integrators for extended systems dynamics. Molecular Physics 87:1117–1157.

7. Humphrey, W., A. Dalke, and K. Schulten, 1996. VMD – Visual Molecular Dynamics.
J. Mol. Graph. 14:33–38.

7

